Suppr超能文献

持续性皮质活动(上行状态)对皮质内及丘脑皮质突触输入的影响。

Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs.

作者信息

Rigas Pavlos, Castro-Alamancos Manuel A

机构信息

Department of Neurobiology, Drexel University College of Medicine, 2900 Queen Ln., Philadelphia, PA 19129, USA.

出版信息

J Neurophysiol. 2009 Jul;102(1):119-31. doi: 10.1152/jn.00126.2009. Epub 2009 Apr 29.

Abstract

The neocortex generates short epochs of persistent activity called up states, which are associated with changes in cellular and network excitability. Using somatosensory thalamocortical slices, we studied the impact of persistent cortical activity during spontaneous up states on intrinsic cellular excitability (input resistance) and on excitatory synaptic inputs of cortical cells. At the intrinsic excitability level, we found that the expected decrease in input resistance (high conductance) resulting from synaptic barrages during up states is counteracted by an increase in input resistance due to depolarization per se. The result is a variable but on average relatively small reduction in input resistance during up states. At the synaptic level, up states enhanced a late synaptic component of short-latency thalamocortical field potential responses but suppressed intracortical field potential responses. The thalamocortical enhancement did not reflect an increase in synaptic strength, as determined by measuring the evoked postsynaptic current, but instead an increase in evoked action potential (spike) probability due to depolarization during up states. In contrast, the intracortical suppression was associated with a reduction in synaptic strength, apparently driven by increased presynaptic intracortical activity during up states. In addition, intracortical suppression also reflected a reduction in evoked spike latency caused by depolarization and the abolishment of longer-latency spikes caused by stronger inhibitory drive during up states. In conclusion, depolarization during up states increases the success of excitatory synaptic inputs to reach firing. However, activity-dependent synaptic depression caused by increased presynaptic firing during up states and the enhancement of evoked inhibitory drive caused by depolarization suppress excitatory intracortical synaptic inputs.

摘要

新皮层会产生被称为“上行状态”的短暂持续性活动时期,这与细胞和网络兴奋性的变化有关。我们使用体感丘脑皮质切片,研究了自发上行状态期间持续性皮质活动对皮质细胞内在细胞兴奋性(输入电阻)和兴奋性突触输入的影响。在内在兴奋性水平上,我们发现上行状态期间突触活动引起的预期输入电阻降低(高电导)被去极化本身导致的输入电阻增加所抵消。结果是上行状态期间输入电阻有可变但平均相对较小的降低。在突触水平上,上行状态增强了短潜伏期丘脑皮质场电位反应的晚期突触成分,但抑制了皮质内场电位反应。丘脑皮质增强并不反映突触强度的增加,这是通过测量诱发的突触后电流确定的,而是反映了上行状态期间去极化导致的诱发动作电位(尖峰)概率增加。相比之下,皮质内抑制与突触强度降低有关,这显然是由上行状态期间突触前皮质内活动增加驱动的。此外,皮质内抑制还反映了去极化导致的诱发尖峰潜伏期缩短以及上行状态期间更强抑制驱动导致的长潜伏期尖峰消失。总之,上行状态期间的去极化增加了兴奋性突触输入达到放电的成功率。然而,上行状态期间突触前放电增加导致的活动依赖性突触抑制以及去极化导致的诱发抑制驱动增强抑制了皮质内兴奋性突触输入。

相似文献

1
Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs.
J Neurophysiol. 2009 Jul;102(1):119-31. doi: 10.1152/jn.00126.2009. Epub 2009 Apr 29.
2
Thalamocortical Up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity.
J Neurosci. 2007 Apr 18;27(16):4261-72. doi: 10.1523/JNEUROSCI.0003-07.2007.
3
Synaptic cooperativity regulates persistent network activity in neocortex.
J Neurosci. 2013 Feb 13;33(7):3151-63. doi: 10.1523/JNEUROSCI.4424-12.2013.
4
5
Gain modulation of synaptic inputs by network state in auditory cortex in vivo.
J Neurosci. 2015 Feb 11;35(6):2689-702. doi: 10.1523/JNEUROSCI.2004-14.2015.
6
Short-term dynamics of thalamocortical and intracortical synapses onto layer 6 neurons in neocortex.
J Neurophysiol. 2002 Oct;88(4):1924-32. doi: 10.1152/jn.2002.88.4.1924.
7
Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.
Nat Neurosci. 2007 Apr;10(4):462-8. doi: 10.1038/nn1861. Epub 2007 Mar 4.
8
Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo.
J Neurophysiol. 2004 May;91(5):1990-8. doi: 10.1152/jn.01105.2003.
9
Cortex is driven by weak but synchronously active thalamocortical synapses.
Science. 2006 Jun 16;312(5780):1622-7. doi: 10.1126/science.1124593.

引用本文的文献

2
Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury.
J Physiol. 2021 Oct;599(20):4643-4669. doi: 10.1113/JP281901. Epub 2021 Sep 28.
3
Up and Down States of Cortical Neurons in Focal Limbic Seizures.
Cereb Cortex. 2020 May 14;30(5):3074-3086. doi: 10.1093/cercor/bhz295.
4
Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development.
J Neurosci. 2019 Nov 6;39(45):8900-8915. doi: 10.1523/JNEUROSCI.1212-19.2019. Epub 2019 Sep 23.
5
Long-Term Effects of Early Life Seizures on Endogenous Local Network Activity of the Mouse Neocortex.
Front Synaptic Neurosci. 2018 Nov 27;10:43. doi: 10.3389/fnsyn.2018.00043. eCollection 2018.
6
PV+ Cells Enhance Temporal Population Codes but not Stimulus-Related Timing in Auditory Cortex.
Cereb Cortex. 2019 Feb 1;29(2):627-647. doi: 10.1093/cercor/bhx345.
7
Disruption of cortical network activity by the general anaesthetic isoflurane.
Br J Anaesth. 2017 Oct 1;119(4):685-696. doi: 10.1093/bja/aex199.
8
The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions.
Front Neural Circuits. 2016 Jan 14;9:88. doi: 10.3389/fncir.2015.00088. eCollection 2015.
9
10
NMDA receptors are the basis for persistent network activity in neocortex slices.
J Neurophysiol. 2015 Jun 1;113(10):3816-26. doi: 10.1152/jn.00090.2015. Epub 2015 Apr 15.

本文引用的文献

1
UP states protect ongoing cortical activity from thalamic inputs.
PLoS One. 2008;3(12):e3971. doi: 10.1371/journal.pone.0003971. Epub 2008 Dec 18.
2
Direct measurement of somatic voltage clamp errors in central neurons.
Nat Neurosci. 2008 Jul;11(7):790-8. doi: 10.1038/nn.2137. Epub 2008 Jun 15.
3
Cortical transformation of wide-field (multiwhisker) sensory responses.
J Neurophysiol. 2008 Jul;100(1):358-70. doi: 10.1152/jn.90538.2008. Epub 2008 May 14.
4
Brain stem reticular formation and activation of the EEG.
Electroencephalogr Clin Neurophysiol. 1949 Nov;1(4):455-73.
5
State changes rapidly modulate cortical neuronal responsiveness.
J Neurosci. 2007 Sep 5;27(36):9607-22. doi: 10.1523/JNEUROSCI.2184-07.2007.
6
Thalamocortical Up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity.
J Neurosci. 2007 Apr 18;27(16):4261-72. doi: 10.1523/JNEUROSCI.0003-07.2007.
7
Enhancement of visual responsiveness by spontaneous local network activity in vivo.
J Neurophysiol. 2007 Jun;97(6):4186-202. doi: 10.1152/jn.01114.2006. Epub 2007 Apr 4.
8
Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.
Nat Neurosci. 2007 Apr;10(4):462-8. doi: 10.1038/nn1861. Epub 2007 Mar 4.
9
Background synaptic activity is sparse in neocortex.
J Neurosci. 2006 Aug 9;26(32):8267-77. doi: 10.1523/JNEUROSCI.2152-06.2006.
10
Cortex is driven by weak but synchronously active thalamocortical synapses.
Science. 2006 Jun 16;312(5780):1622-7. doi: 10.1126/science.1124593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验