Suppr超能文献

异氟醚对皮质网络活动的干扰。

Disruption of cortical network activity by the general anaesthetic isoflurane.

机构信息

Department of Anesthesiology, Experimental Anesthesiology Section, University Hospital of Tübingen, Tübingen, Germany.

Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.

出版信息

Br J Anaesth. 2017 Oct 1;119(4):685-696. doi: 10.1093/bja/aex199.

Abstract

BACKGROUND

Actions of general anaesthetics on activity in the cortico-thalamic network likely contribute to loss of consciousness and disconnection from the environment. Previously, we showed that the general anaesthetic isoflurane preferentially suppresses cortically evoked synaptic responses compared with thalamically evoked synaptic responses, but how this differential sensitivity translates into changes in network activity is unclear.

METHODS

We investigated isoflurane disruption of spontaneous and stimulus-induced cortical network activity using multichannel recordings in murine auditory thalamo-cortical brain slices.

RESULTS

Under control conditions, afferent stimulation elicited short latency, presumably monosynaptically driven, spiking responses, as well as long latency network bursts that propagated horizontally through the cortex. Isoflurane (0.05-0.6 mM) suppressed spiking activity overall, but had a far greater effect on network bursts than on early spiking responses. At isoflurane concentrations >0.3 mM, network bursts were almost entirely blocked, even with increased stimulation intensity and in response to paired (thalamo-cortical + cortical layer 1) stimulation, while early spiking responses were <50% blocked. Isoflurane increased the threshold for eliciting bursts, decreased their propagation speed and prevented layer 1 afferents from facilitating burst induction by thalamo-cortical afferents.

CONCLUSIONS

Disruption of horizontal activity spread and of layer 1 facilitation of thalamo-cortical responses likely contribute to the mechanism by which suppression of cortical feedback connections disrupts sensory awareness under anaesthesia.

摘要

背景

全身麻醉药物对皮质丘脑网络活动的作用可能导致意识丧失和与环境脱节。先前,我们发现全身麻醉剂异氟醚优先抑制皮质诱发的突触反应,而不是丘脑诱发的突触反应,但这种差异敏感性如何转化为网络活动的变化尚不清楚。

方法

我们使用多通道记录在鼠听觉丘脑皮质脑片中研究异氟醚对自发和刺激诱导的皮质网络活动的干扰。

结果

在对照条件下,传入刺激引发短潜伏期,推测为单突触驱动的,爆发反应,以及长潜伏期网络爆发,在皮质中水平传播。异氟醚(0.05-0.6 mM)总体上抑制了爆发活动,但对网络爆发的影响远大于对早期爆发反应的影响。在异氟醚浓度>0.3 mM 时,网络爆发几乎完全被阻断,即使增加刺激强度和对成对(丘脑皮质+皮质第 1 层)刺激,而早期爆发反应的阻断率<50%。异氟醚增加了爆发的触发阈值,降低了它们的传播速度,并阻止了第 1 层传入纤维通过丘脑皮质传入纤维促进爆发的诱导。

结论

破坏水平活动的传播和皮层反馈连接对麻醉下感觉意识的破坏机制可能起作用。

相似文献

1
Disruption of cortical network activity by the general anaesthetic isoflurane.
Br J Anaesth. 2017 Oct 1;119(4):685-696. doi: 10.1093/bja/aex199.
2
Selective effects of isoflurane on cortico-cortical feedback afferent responses in murine non-primary neocortex.
Br J Anaesth. 2019 Oct;123(4):488-496. doi: 10.1016/j.bja.2019.06.018. Epub 2019 Aug 2.
3
Altered stimulus representation in rat auditory cortex is not causal for loss of consciousness under general anaesthesia.
Br J Anaesth. 2018 Sep;121(3):605-615. doi: 10.1016/j.bja.2018.05.054. Epub 2018 Jun 28.
4
Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.
Front Syst Neurosci. 2014 Oct 7;8:191. doi: 10.3389/fnsys.2014.00191. eCollection 2014.
7
General Anesthesia Decouples Cortical Pyramidal Neurons.
Cell. 2020 Feb 20;180(4):666-676.e13. doi: 10.1016/j.cell.2020.01.024.
8
Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.
Neurosci Bull. 2015 Dec;31(6):697-704. doi: 10.1007/s12264-015-1562-4.
9
Cortical responses to auditory stimuli during isoflurane burst suppression anaesthesia.
Anaesthesia. 1999 Mar;54(3):210-4. doi: 10.1046/j.1365-2044.1999.00300.x.
10
Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats.
Anesthesiology. 2010 Feb;112(2):355-63. doi: 10.1097/ALN.0b013e3181ca3196.

引用本文的文献

1
The Administration of Ketamine Is Associated with Dose-Dependent Stabilization of Cortical Dynamics in Humans.
J Neurosci. 2025 May 14;45(20):e1545242025. doi: 10.1523/JNEUROSCI.1545-24.2025.
2
Brain state identification and neuromodulation to promote recovery of consciousness.
Brain Commun. 2024 Oct 11;6(5):fcae362. doi: 10.1093/braincomms/fcae362. eCollection 2024.
3
Myelin modulates the process of isoflurane anesthesia through the regulation of neural activity.
CNS Neurosci Ther. 2024 Aug;30(8):e14922. doi: 10.1111/cns.14922.
4
Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses.
PNAS Nexus. 2024 Feb 22;3(2):pgae082. doi: 10.1093/pnasnexus/pgae082. eCollection 2024 Feb.
5
Holistic bursting cells store long-term memory in auditory cortex.
Nat Commun. 2023 Dec 7;14(1):8090. doi: 10.1038/s41467-023-43620-5.
6
Amplitude- and frequency-dependent activation of layer II/III neurons by intracortical microstimulation.
iScience. 2023 Oct 6;26(11):108140. doi: 10.1016/j.isci.2023.108140. eCollection 2023 Nov 17.
7
Spatially specific, closed-loop infrared thalamocortical deep brain stimulation.
bioRxiv. 2023 Oct 19:2023.10.04.560859. doi: 10.1101/2023.10.04.560859.
8
Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model.
Nat Commun. 2023 Sep 4;14(1):5385. doi: 10.1038/s41467-023-41026-x.
9
Awake perception is associated with dedicated neuronal assemblies in the cerebral cortex.
Nat Neurosci. 2022 Oct;25(10):1327-1338. doi: 10.1038/s41593-022-01168-5. Epub 2022 Sep 28.
10
Effects of General Anesthetics on Synaptic Transmission and Plasticity.
Curr Neuropharmacol. 2022;20(1):27-54. doi: 10.2174/1570159X19666210803105232.

本文引用的文献

1
Electrocorticographic delineation of human auditory cortical fields based on effects of propofol anesthesia.
Neuroimage. 2017 May 15;152:78-93. doi: 10.1016/j.neuroimage.2017.02.061. Epub 2017 Feb 27.
2
Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons.
Neuron. 2016 Aug 3;91(3):540-547. doi: 10.1016/j.neuron.2016.06.028. Epub 2016 Jul 14.
3
Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice.
Cereb Cortex. 2016 Oct;26(10):3945-52. doi: 10.1093/cercor/bhw200. Epub 2016 Jul 6.
4
General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex.
Front Cell Neurosci. 2016 Apr 14;10:64. doi: 10.3389/fncel.2016.00064. eCollection 2016.
5
The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions.
Front Neural Circuits. 2016 Jan 14;9:88. doi: 10.3389/fncir.2015.00088. eCollection 2015.
6
Packet-based communication in the cortex.
Nat Rev Neurosci. 2015 Dec;16(12):745-55. doi: 10.1038/nrn4026. Epub 2015 Oct 28.
7
From the neuron doctrine to neural networks.
Nat Rev Neurosci. 2015 Aug;16(8):487-97. doi: 10.1038/nrn3962. Epub 2015 Jul 8.
8
Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection.
Neuron. 2015 Jul 1;87(1):179-92. doi: 10.1016/j.neuron.2015.05.038. Epub 2015 Jun 11.
9
Signature of consciousness in the dynamics of resting-state brain activity.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):887-92. doi: 10.1073/pnas.1418031112. Epub 2015 Jan 5.
10
Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.
Front Syst Neurosci. 2014 Oct 7;8:191. doi: 10.3389/fnsys.2014.00191. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验