Suppr超能文献

类风湿关节炎患者抑郁状态的预测:疼痛程度、疲劳及合并症的信号重要性

Predicting depression in rheumatoid arthritis: the signal importance of pain extent and fatigue, and comorbidity.

作者信息

Wolfe Frederick, Michaud Kaleb

机构信息

University of Kansas School of Medicine and National Data Bank for Rheumatic Diseases, Wichita, Kansas.

出版信息

Arthritis Rheum. 2009 May 15;61(5):667-73. doi: 10.1002/art.24428.

Abstract

OBJECTIVE

To determine the incidence of self-reported depression (SRD) in rheumatoid arthritis and to identify and rank clinically useful predictors of depression.

METHODS

We assessed 22,131 patients for SRD between 1999 and 2008. We collected demographic, clinical and treatment data, household income, employment and work disability status, comorbidity, scales for function, pain, global, and fatigue, the Regional Pain Scale (RPS), the Symptom Intensity (SI) scale (a linear combination of the RPS and the fatigue scales) and linear combinations of the Health Assessment Questionnaire, pain and global severity. We used logistic regression analyses with multivariable fractional polynomial predictors, and Random Forest analysis to determine the importance of the predictors.

RESULTS

The cross-sectional prevalence of self-reported depression was 15.2% (95% confidence interval [95% CI] 14.7-15.7%) and the incidence rate was 5.5 (95% CI 5.3-5.7) per 100 patient years of observation. The cumulative risk of SRD after 9 years was 38.3% (95% CI 36.6-40.1%). Almost all variables were significant predictors in logistic models. In Random Forest analyses, the SI scale, followed by comorbidity, best predicted self-reported depression, and no other variable or combination of variables improved prediction compared with the SI scale.

CONCLUSION

Pain extent and fatigue (SI scale) are the dominant predictors of SRD. These variables, also of central importance in the symptomatology of fibromyalgia, are powerful markers of distress. A strong case can be made for the inclusion of these assessments in routine rheumatology practice. In addition, actual knowledge of comorbidity provides important insights into the patient's global health and associated perceptions.

摘要

目的

确定类风湿关节炎患者自我报告的抑郁症(SRD)发病率,并识别和排列抑郁症的临床有用预测因素。

方法

我们在1999年至2008年期间对22131例患者进行了SRD评估。我们收集了人口统计学、临床和治疗数据、家庭收入、就业和工作残疾状况、合并症、功能、疼痛、整体和疲劳量表、区域疼痛量表(RPS)、症状强度(SI)量表(RPS和疲劳量表的线性组合)以及健康评估问卷、疼痛和整体严重程度的线性组合。我们使用多变量分数多项式预测因素的逻辑回归分析和随机森林分析来确定预测因素的重要性。

结果

自我报告抑郁症的横断面患病率为15.2%(95%置信区间[95%CI]14.7 - 15.7%),发病率为每100患者年观察期5.5(95%CI 5.3 - 5.7)。9年后SRD的累积风险为38.3%(95%CI 36.6 - 40.1%)。几乎所有变量在逻辑模型中都是显著的预测因素。在随机森林分析中,SI量表,其次是合并症,最能预测自我报告的抑郁症,与SI量表相比,没有其他变量或变量组合能改善预测。

结论

疼痛程度和疲劳(SI量表)是SRD的主要预测因素。这些变量在纤维肌痛症状学中也至关重要,是痛苦的有力标志。有充分理由将这些评估纳入常规风湿病学实践。此外,合并症的实际情况为了解患者的整体健康状况和相关认知提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验