Antonov Alexey V, Dietmann Sabine, Rodchenkov Igor, Mewes Hans W
GSF National Research Center for Environment and Health, Institute for Bioinformatics, Ingolstädter Landstrasse 1, Neuherberg, Germany.
Proteomics. 2009 May;9(10):2740-9. doi: 10.1002/pmic.200800612.
Recent advances in experimental technologies allow for the detection of a complete cell proteome. Proteins that are expressed at a particular cell state or in a particular compartment as well as proteins with differential expression between various cells states are commonly delivered by many proteomics studies. Once a list of proteins is derived, a major challenge is to interpret the identified set of proteins in the biological context. Protein-protein interaction (PPI) data represents abundant information that can be employed for this purpose. However, these data have not yet been fully exploited due to the absence of a methodological framework that can integrate this type of information. Here, we propose to infer a network model from an experimentally identified protein list based on the available information about the topology of the global PPI network. We propose to use a Monte Carlo simulation procedure to compute the statistical significance of the inferred models. The method has been implemented as a freely available web-based tool, PPI spider (http://mips.helmholtz-muenchen.de/proj/ppispider). To support the practical significance of PPI spider, we collected several hundreds of recently published experimental proteomics studies that reported lists of proteins in various biological contexts. We reanalyzed them using PPI spider and demonstrated that in most cases PPI spider could provide statistically significant hypotheses that are helpful for understanding of the protein list.
实验技术的最新进展使得检测完整的细胞蛋白质组成为可能。许多蛋白质组学研究通常会呈现出在特定细胞状态或特定区室中表达的蛋白质,以及在不同细胞状态之间存在差异表达的蛋白质。一旦获得了蛋白质列表,一个主要挑战就是在生物学背景下解读所鉴定出的蛋白质集。蛋白质-蛋白质相互作用(PPI)数据代表了可用于此目的的丰富信息。然而,由于缺乏能够整合此类信息的方法框架,这些数据尚未得到充分利用。在此,我们建议基于关于全局PPI网络拓扑结构的可用信息,从实验鉴定出的蛋白质列表中推断出一个网络模型。我们建议使用蒙特卡罗模拟程序来计算推断模型的统计显著性。该方法已被实现为一个免费的基于网络的工具,即PPI蜘蛛(http://mips.helmholtz-muenchen.de/proj/ppispider)。为了支持PPI蜘蛛的实际意义,我们收集了数百项最近发表的实验蛋白质组学研究,这些研究报告了各种生物学背景下的蛋白质列表。我们使用PPI蜘蛛对它们进行了重新分析,并证明在大多数情况下,PPI蜘蛛能够提供具有统计显著性的假设,有助于理解蛋白质列表。