Suppr超能文献

基于节点中心性加权的相互作用网络的基因集富集分析

Gene Set Enrichment Analysis of Interaction Networks Weighted by Node Centrality.

作者信息

Zito Alessandra, Lualdi Marta, Granata Paola, Cocciadiferro Dario, Novelli Antonio, Alberio Tiziana, Casalone Rosario, Fasano Mauro

机构信息

Department of Science and High Technology, Center of Bioinformatics, University of Insubria, Busto Arsizio, Italy.

Unit of Cytogenetics and Medical Genetics, ASST dei Sette Laghi, Varese, Italy.

出版信息

Front Genet. 2021 Feb 24;12:577623. doi: 10.3389/fgene.2021.577623. eCollection 2021.

Abstract

Gene set enrichment analysis (GSEA) is a powerful tool to associate a disease phenotype to a group of genes/proteins. GSEA attributes a specific weight to each gene/protein in the input list that depends on a metric of choice, which is usually represented by quantitative expression data. However, expression data are not always available. Here, GSEA based on betweenness centrality of a protein-protein interaction (PPI) network is described and applied to two cases, where an expression metric is missing. First, personalized PPI networks were generated from genes displaying alterations (assessed by array comparative genomic hybridization and whole exome sequencing) in four probands bearing a 16p13.11 microdeletion in common and several other point variants. Patients showed disease phenotypes linked to neurodevelopment. All networks were assembled around a cluster of first interactors of altered genes with high betweenness centrality. All four clusters included genes known to be involved in neurodevelopmental disorders with different centrality. Moreover, the GSEA results pointed out to the evidence of "cell cycle" among enriched pathways. Second, a large interaction network obtained by merging proteomics studies on three neurodegenerative disorders was analyzed from the topological point of view. We observed that most central proteins are often linked to Parkinson's disease. The selection of these proteins improved the specificity of GSEA, with "Metabolism of amino acids and derivatives" and "Cellular response to stress or external stimuli" as top-ranked enriched pathways. In conclusion, betweenness centrality revealed to be a suitable metric for GSEA. Thus, centrality-based GSEA represents an opportunity for precision medicine and network medicine.

摘要

基因集富集分析(GSEA)是一种将疾病表型与一组基因/蛋白质相关联的强大工具。GSEA根据所选的一种度量标准为输入列表中的每个基因/蛋白质赋予特定权重,这种度量标准通常由定量表达数据表示。然而,表达数据并非总是可用。在此,描述了基于蛋白质 - 蛋白质相互作用(PPI)网络中介中心性的GSEA,并将其应用于两个缺少表达度量标准的案例。首先,从四个共同携带16p13.11微缺失及其他几个点变异且基因显示出改变(通过阵列比较基因组杂交和全外显子测序评估)的先证者中生成个性化PPI网络。患者表现出与神经发育相关的疾病表型。所有网络都围绕着具有高中介中心性的改变基因的第一相互作用子簇组装而成。所有四个簇都包含已知参与不同中心性神经发育障碍的基因。此外,GSEA结果指出在富集通路中有“细胞周期”的证据。其次,从拓扑学角度分析了通过合并三种神经退行性疾病的蛋白质组学研究获得的一个大型相互作用网络。我们观察到大多数中心蛋白通常与帕金森病相关。这些蛋白的选择提高了GSEA的特异性,“氨基酸及其衍生物的代谢”和“细胞对应激或外部刺激的反应”作为排名靠前的富集通路。总之,中介中心性被证明是GSEA的一种合适度量标准。因此,基于中心性的GSEA为精准医学和网络医学提供了一个契机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3434/7943873/895b3431904a/fgene-12-577623-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验