Suppr超能文献

CHO细胞对重复性流体动力学应力的生理反应。

Physiological responses of CHO cells to repetitive hydrodynamic stress.

作者信息

Godoy-Silva Ruben, Chalmers Jeffrey J, Casnocha Susan A, Bass Laura A, Ma Ningning

机构信息

Bioprocess R&D, Global Biologics, Pfizer, Inc., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA.

出版信息

Biotechnol Bioeng. 2009 Aug 15;103(6):1103-17. doi: 10.1002/bit.22339.

Abstract

A majority of the previous investigations on the hydrodynamic sensitivity of mammalian cells have focused on lethal effects as determined by cell death or lysis. In this study, we investigated the effect of hydrodynamic stress on CHO cells in a fed-batch process using a previously reported system which subjects cells to repetitive, high levels of hydrodynamic stress, quantified by energy dissipation rate (EDR). The results indicated that cell growth and monoclonal antibody production of the test cells were very resistant to the hydrodynamic stress. Compared to the control, no significant variation was observed at the highest EDR tested, 6.4 x 10(6) W/m(3). Most product quality attributes were not affected by intense hydrodynamic stress either. The only significant impact was on glycosylation. A shift of glycosylation pattern was observed at EDR levels at or higher than 6.0 x 10(4) W/m(3), which is two orders of magnitude lower than the EDR where physical cell damage, as measured by lactate dehydrogenase release, was observed. While not as extensively investigated, a second monoclonal antibody produced in a different CHO clone exhibited the same glycosylation change at an intensive EDR, 2.9 x 10(5) W/m(3). Conversely, a low EDR of 0.9 x 10(2) W/m(3) had no effect on the glycosylation pattern. As 6.0 x 10(4) W/m(3), the lowest EDR that triggers the glycosylation shift, is about one order of magnitude higher than the estimated, maximum EDR in typically operated, large-scale stirred tank bioreactors, further studies in a lower EDR range of 1 x 10(3)-6.0 x 10(4) W/m(3) are needed to assess the glycosylation shift effect under typical large-scale bioreactor operation conditions. Follow-up studies in stirred tanks are also needed to confirm the glycosylation shift effect and to validate the repetitive hydrodynamic stress model.

摘要

先前对哺乳动物细胞流体动力学敏感性的大多数研究都集中在由细胞死亡或裂解所确定的致死效应上。在本研究中,我们使用先前报道的系统,在补料分批培养过程中研究了流体动力学应力对CHO细胞的影响,该系统使细胞受到重复性的高水平流体动力学应力作用,并通过能量耗散率(EDR)进行量化。结果表明,受试细胞的细胞生长和单克隆抗体产生对流体动力学应力具有很强的抗性。与对照相比,在测试的最高EDR(6.4×10⁶W/m³)下未观察到显著变化。大多数产品质量属性也不受强烈流体动力学应力的影响。唯一显著的影响是对糖基化的影响。在EDR水平达到或高于6.0×10⁴W/m³时观察到糖基化模式的转变,这比通过乳酸脱氢酶释放测量的细胞物理损伤所观察到的EDR低两个数量级。虽然未进行广泛研究,但在不同CHO克隆中产生的第二种单克隆抗体在2.9×10⁵W/m³的高强度EDR下表现出相同的糖基化变化。相反,0.9×10²W/m³的低EDR对糖基化模式没有影响。由于触发糖基化转变的最低EDR(6.0×10⁴W/m³)比典型操作的大规模搅拌罐生物反应器中估计的最大EDR高约一个数量级,因此需要在1×10³ - 6.0×10⁴W/m³的较低EDR范围内进行进一步研究,以评估典型大规模生物反应器操作条件下的糖基化转变效应。还需要在搅拌罐中进行后续研究,以确认糖基化转变效应并验证重复性流体动力学应力模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验