Suppr超能文献

用于实时检测淋巴、血液和组织中碳纳米管动力学的体内拉曼流式细胞术。

In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues.

作者信息

Biris Alexandru S, Galanzha Ekaterina I, Li Zhongrui, Mahmood Meena, Xu Yang, Zharov Vladimir P

机构信息

University of Arkansas at Little Rock, Applied Science Department, Nanotechnology Center, Little Rock, Arkansas 72204, USA.

出版信息

J Biomed Opt. 2009 Mar-Apr;14(2):021006. doi: 10.1117/1.3119145.

Abstract

Nanoparticles are intensively being explored as contrast agents for medical diagnostics and therapies using various optical methods. We present the first demonstration of the use of time-resolved Raman spectroscopy for in vivo real-time detection of circulating carbon nanotubes (CNTs) or cancer cells labeled with CNTs in the lymph, blood, and tissues of live animals with fast spectral acquisition times of down to few milliseconds. After intravenously administering CNTs in the tail vein of the rat, this technique provides the ability to detect the circulation of CNTs in the blood microvessels of the intact rat ear. The capability of Raman spectroscopy is also demonstrated to monitor, identify, and image the CNTs during their transportation by lymphatics in the rat ear and mesentery. The strong and specific Raman scattering properties of CNTs make it possible to detect in vitro and in vivo single cancer cells (HeLa) tagged with CNTs. In vivo Raman flow cytometry opens a new avenue for multiparameter analysis of circulating nanoparticles with strong Raman scattering properties and their pharmokinetics in blood and lymph systems. Moreover, this technology has the potential for molecular detection and identification of circulating tumor cells, and infections labeled with CNTs.

摘要

纳米颗粒正作为使用各种光学方法进行医学诊断和治疗的造影剂而被深入研究。我们首次展示了利用时间分辨拉曼光谱在活体动物的淋巴、血液和组织中对循环碳纳米管(CNT)或用CNT标记的癌细胞进行体内实时检测,其光谱采集时间快至几毫秒。在大鼠尾静脉静脉注射CNT后,该技术能够检测完整大鼠耳部微血管中CNT的循环情况。拉曼光谱的能力还体现在监测、识别和成像大鼠耳部和肠系膜中通过淋巴管运输的CNT。CNT强大且特异的拉曼散射特性使得检测体外和体内用CNT标记的单个癌细胞(HeLa)成为可能。体内拉曼流式细胞术为具有强拉曼散射特性的循环纳米颗粒及其在血液和淋巴系统中的药代动力学进行多参数分析开辟了一条新途径。此外,该技术具有对循环肿瘤细胞以及用CNT标记的感染进行分子检测和识别的潜力。

相似文献

2
Photothermal image flow cytometry in vivo.
Opt Lett. 2005 Mar 15;30(6):628-30. doi: 10.1364/ol.30.000628.
3
Detection of carbon nanotubes in environmental matrices using programmed thermal analysis.
Environ Sci Technol. 2012 Nov 20;46(22):12246-53. doi: 10.1021/es300804f. Epub 2012 Jun 14.
4
Carbon nanotubes for biomedical imaging: the recent advances.
Adv Drug Deliv Rev. 2013 Dec;65(15):1951-63. doi: 10.1016/j.addr.2013.10.002. Epub 2013 Oct 30.
5
Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation.
J Occup Environ Hyg. 2016 Dec;13(12):915-923. doi: 10.1080/15459624.2016.1191639.
7
A flow cytometer for the measurement of Raman spectra.
Cytometry A. 2008 Feb;73(2):119-28. doi: 10.1002/cyto.a.20520.
8
Flow cytometry-based evaluation and enrichment of multiwalled carbon nanotube dispersions.
Langmuir. 2012 Mar 20;28(11):4939-47. doi: 10.1021/la300107t. Epub 2012 Mar 8.
9
A new surface-enhanced Raman scattering system for carbon nanotubes.
Spectrochim Acta A Mol Biomol Spectrosc. 2005 Jul;61(9):2211-3. doi: 10.1016/j.saa.2004.08.020.
10

引用本文的文献

1
Raman Flow Cytometry and Its Biomedical Applications.
Biosensors (Basel). 2024 Mar 31;14(4):171. doi: 10.3390/bios14040171.
2
In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells.
Light Sci Appl. 2021 May 28;10(1):110. doi: 10.1038/s41377-021-00542-5.
3
5
Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.
J Colloid Interface Sci. 2016 Dec 15;484:135-145. doi: 10.1016/j.jcis.2016.07.078. Epub 2016 Jul 29.
6
Tip in-light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples.
Microsc Res Tech. 2017 Jan;80(1):30-40. doi: 10.1002/jemt.22744. Epub 2016 Aug 12.
7
Carbon nanotubes in hyperthermia therapy.
Adv Drug Deliv Rev. 2013 Dec;65(15):2045-60. doi: 10.1016/j.addr.2013.08.001. Epub 2013 Aug 8.
9
Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice.
J Appl Toxicol. 2013 Oct;33(10):1044-52. doi: 10.1002/jat.2796. Epub 2012 Oct 10.
10
Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts.
J Biophotonics. 2013 May;6(5):425-34. doi: 10.1002/jbio.201200047. Epub 2012 Aug 20.

本文引用的文献

1
Carbon nanotubes as photoacoustic molecular imaging agents in living mice.
Nat Nanotechnol. 2008 Sep;3(9):557-62. doi: 10.1038/nnano.2008.231. Epub 2008 Aug 17.
3
Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1410-5. doi: 10.1073/pnas.0707654105. Epub 2008 Jan 29.
4
A flow cytometer for the measurement of Raman spectra.
Cytometry A. 2008 Feb;73(2):119-28. doi: 10.1002/cyto.a.20520.
5
In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.
Nat Biotechnol. 2008 Jan;26(1):83-90. doi: 10.1038/nbt1377. Epub 2007 Dec 23.
9
Biodistribution of functionalized multiwall carbon nanotubes in mice.
Nucl Med Biol. 2007 Jul;34(5):579-83. doi: 10.1016/j.nucmedbio.2007.03.003. Epub 2007 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验