Invernizzi S, Treu G
Department of Mathematical Sciences, University of Trieste, Italy.
J Math Biol. 1991;29(8):733-42. doi: 10.1007/BF00160189.
We study, from a quantitative point of view, the Hopf bifurcation in an ODE model of feedback control type introduced by Goodwin (1963) to describe the dynamics of end-product inhibition of gene activity. We formally prove that the exchange of linear stability of the positive equilibrium in the n-dimensional Goodwin system with equal reaction constants coexists with a Hopf bifurcation of nontrivial periodic solutions emanating from this equilibrium, without any further restriction on the dimension n greater than or equal to 3 or on the Hill coefficient. The direction of the bifurcation and the stability and the period of the bifurcating orbits are estimated by means of the algorithm proposed by Hassard et al. (1981).
我们从定量的角度研究了古德温(1963年)引入的反馈控制型常微分方程(ODE)模型中的霍普夫分岔,该模型用于描述基因活性的终产物抑制动力学。我们正式证明,在具有相等反应常数的n维古德温系统中,正平衡点线性稳定性的交换与源自该平衡点的非平凡周期解的霍普夫分岔共存,对于维度n大于或等于3以及希尔系数均没有任何进一步的限制。通过哈萨德等人(1981年)提出的算法估计了分岔方向、分岔轨道的稳定性和周期。