Suppr超能文献

一种超声的非均匀非线性衰减全波模型。

A heterogeneous nonlinear attenuating full-wave model of ultrasound.

作者信息

Pinton Gianmarco F, Dahl Jeremy, Rosenzweig Stephen, Trahey Gregg E

机构信息

Ecole Superieure de Physique et Chimie Industrielles, Paris, France.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.

Abstract

A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain (FDTD). Three-dimensional solutions of the equation are verified with water tank measurements of a commercial diagnostic ultrasound transducer and are shown to be in excellent agreement in terms of the fundamental and harmonic acoustic fields and the power spectrum at the focus. The linear and nonlinear components of the algorithm are also verified independently. In the linear nonattenuating regime solutions match results from Field II, a well established software package used in transducer modeling, to within 0.3 dB. Nonlinear plane wave propagation is shown to closely match results from the Galerkin method up to 4 times the fundamental frequency. In addition to thermoviscous attenuation we present a numerical solution of the relaxation attenuation laws that allows modeling of arbitrary frequency dependent attenuation, such as that observed in tissue. A perfectly matched layer (PML) is implemented at the boundaries with a numerical implementation that allows the PML to be used with high-order discretizations. A -78 dB reduction in the reflected amplitude is demonstrated. The numerical algorithm is used to simulate a diagnostic ultrasound pulse propagating through a histologically measured representation of human abdominal wall with spatial variation in the speed of sound, attenuation, nonlinearity, and density. An ultrasound image is created in silico using the same physical and algorithmic process used in an ultrasound scanner: a series of pulses are transmitted through heterogeneous scattering tissue and the received echoes are used in a delay-and-sum beam-forming algorithm to generate a images. The resulting harmonic image exhibits characteristic improvement in lesion boundary definition and contrast when compared with the fundamental image. We demonstrate a mechanism of harmonic image quality improvement by showing that the harmonic point spread function is less sensitive to reverberation clutter.

摘要

利用时域有限差分法(FDTD)对描述非均匀衰减介质中非线性传播的全波方程进行了数值求解。通过对商用诊断超声换能器进行水槽测量,验证了该方程的三维解,结果表明,在基波和谐波声场以及焦点处的功率谱方面,二者吻合度极高。该算法的线性和非线性部分也分别得到了验证。在线性无衰减区域,解与用于换能器建模的成熟软件包Field II的结果匹配,误差在0.3 dB以内。结果表明,非线性平面波传播与伽辽金方法的结果在高达基频4倍的频率范围内都能紧密匹配。除了热粘性衰减,我们还给出了弛豫衰减定律的数值解,该解可以对任意频率依赖的衰减进行建模,比如在组织中观察到的衰减。在边界处实现了完全匹配层(PML),其数值实现方式允许PML与高阶离散化方法一起使用。结果表明反射幅度降低了78 dB。该数值算法用于模拟诊断超声脉冲在具有声速、衰减、非线性和密度空间变化的人体腹壁组织学测量模型中的传播。利用与超声扫描仪相同的物理和算法过程,在计算机上创建了一幅超声图像:一系列脉冲穿过非均匀散射组织进行发射,接收到的回波用于延迟求和波束形成算法以生成图像。与基波图像相比,生成的谐波图像在病变边界清晰度和对比度方面有显著改善。通过表明谐波点扩散函数对混响杂波不太敏感,我们证明了谐波图像质量提高的一种机制。

相似文献

1
A heterogeneous nonlinear attenuating full-wave model of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.
2
Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):754-65. doi: 10.1109/TUFFC.2011.1868.
3
Sources of image degradation in fundamental and harmonic ultrasound imaging: a nonlinear, full-wave, simulation study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1272-83. doi: 10.1109/TUFFC.2011.1938.
4
Effects of nonlinear ultrasound propagation on high intensity brain therapy.
Med Phys. 2011 Mar;38(3):1207-16. doi: 10.1118/1.3531553.
5
Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):363-70. doi: 10.1007/978-3-642-23623-5_46.
7
Aberration in nonlinear acoustic wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):470-9. doi: 10.1109/tuffc.2007.271.
8
9
Computer simulation of forward wave propagation in soft tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1473-82. doi: 10.1109/tuffc.2005.1516019.
10
Harmonic ultrasound fields through layered liquid media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Feb;51(2):146-52.

引用本文的文献

3
Toward widespread use of virtual trials in medical imaging innovation and regulatory science.
Med Phys. 2024 Dec;51(12):9394-9404. doi: 10.1002/mp.17442. Epub 2024 Oct 6.
4
Cardiac ultrasound simulation for autonomous ultrasound navigation.
Front Cardiovasc Med. 2024 Aug 13;11:1384421. doi: 10.3389/fcvm.2024.1384421. eCollection 2024.
6
Transcranial Ultrasonic Focusing by a Phased Array Based on Micro-CT Images.
Sensors (Basel). 2023 Dec 8;23(24):9702. doi: 10.3390/s23249702.
9
Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2303-2317. doi: 10.1109/TUFFC.2022.3178035. Epub 2022 Jun 30.
10
Adaptive Ultrasound Focusing Through the Cranial Bone for Non-invasive Treatment of Brain Disorders.
Adv Exp Med Biol. 2022;1364:397-409. doi: 10.1007/978-3-030-91979-5_18.

本文引用的文献

1
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
2
Computer model for harmonic ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(5):1259-72. doi: 10.1109/58.869075.
3
Aberration in nonlinear acoustic wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):470-9. doi: 10.1109/tuffc.2007.271.
5
Simulation of ultrasonic focus aberration and correction through human tissue.
J Acoust Soc Am. 2003 Feb;113(2):1166-76. doi: 10.1121/1.1531986.
6
Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
Ultrasonics. 2000 Mar;38(1-8):267-72. doi: 10.1016/s0041-624x(99)00122-5.
7
Clinical use of ultrasound tissue harmonic imaging.
Ultrasound Med Biol. 1999 Jul;25(6):889-94. doi: 10.1016/s0301-5629(99)00060-5.
8
9
Use of harmonic imaging without echocardiographic contrast to improve two-dimensional image quality.
Am J Cardiol. 1998 Sep 15;82(6):794-9. doi: 10.1016/s0002-9149(98)00457-3.
10
Tissue harmonic imaging: why does it work?
J Am Soc Echocardiogr. 1998 Aug;11(8):803-8. doi: 10.1016/s0894-7317(98)70055-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验