Suppr超能文献

用于自主超声导航的心脏超声模拟

Cardiac ultrasound simulation for autonomous ultrasound navigation.

作者信息

Amadou Abdoul Aziz, Peralta Laura, Dryburgh Paul, Klein Paul, Petkov Kaloian, Housden R James, Singh Vivek, Liao Rui, Kim Young-Ho, Ghesu Florin C, Mansi Tommaso, Rajani Ronak, Young Alistair, Rhode Kawal

机构信息

Department of Surgical & Interventional Engineering, King's College London, School of Biomedical Engineering & Imaging Sciences, London, United Kingdom.

Digital Technology and Innovation, Siemens Healthcare Limited, Camberley, United Kingdom.

出版信息

Front Cardiovasc Med. 2024 Aug 13;11:1384421. doi: 10.3389/fcvm.2024.1384421. eCollection 2024.

Abstract

INTRODUCTION

Ultrasound is well-established as an imaging modality for diagnostic and interventional purposes. However, the image quality varies with operator skills as acquiring and interpreting ultrasound images requires extensive training due to the imaging artefacts, the range of acquisition parameters and the variability of patient anatomies. Automating the image acquisition task could improve acquisition reproducibility and quality but training such an algorithm requires large amounts of navigation data, not saved in routine examinations.

METHODS

We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions, such that this pipeline can later be used by learning algorithms for navigation. We present a novel simulation pipeline which uses segmentations from other modalities, an optimized volumetric data representation and GPU-accelerated Monte Carlo path tracing to generate view-dependent and patient-specific ultrasound images.

RESULTS

We extensively validate the correctness of our pipeline with a phantom experiment, where structures' sizes, contrast and speckle noise properties are assessed. Furthermore, we demonstrate its usability to train neural networks for navigation in an echocardiography view classification experiment by generating synthetic images from more than 1,000 patients. Networks pre-trained with our simulations achieve significantly superior performance in settings where large real datasets are not available, especially for under-represented classes.

DISCUSSION

The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.

摘要

引言

超声作为一种用于诊断和介入目的的成像方式已得到广泛认可。然而,图像质量会因操作者技能而异,因为获取和解读超声图像由于成像伪像、采集参数范围以及患者解剖结构的变异性而需要大量培训。自动化图像采集任务可以提高采集的可重复性和质量,但训练这样的算法需要大量导航数据,而这些数据并未保存在常规检查中。

方法

我们提出了一种从其他模态和任意位置生成大量超声图像的方法,以便该流程稍后可被用于导航的学习算法使用。我们展示了一种新颖的模拟流程,该流程使用来自其他模态的分割、优化的体数据表示以及GPU加速的蒙特卡罗路径追踪来生成依赖视图且针对患者的超声图像。

结果

我们通过一个体模实验广泛验证了我们流程的正确性,在该实验中评估了结构的大小、对比度和斑点噪声特性。此外,我们在一个超声心动图视图分类实验中通过从1000多名患者生成合成图像来证明其在训练用于导航的神经网络方面的可用性。在没有大型真实数据集的情况下,特别是对于代表性不足的类别,使用我们的模拟进行预训练的网络在性能上有显著提升。

讨论

所提出的方法允许快速准确地生成针对患者的超声图像,并证明了其在训练与导航相关任务的网络方面的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af34/11347295/47fddae6103b/fcvm-11-1384421-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验