Suppr超能文献

基波和谐波超声成像中图像退化的来源:一种非线性、全波、模拟研究。

Sources of image degradation in fundamental and harmonic ultrasound imaging: a nonlinear, full-wave, simulation study.

机构信息

Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) ParisTech, Centre National de la Recherche Scientifique (CNRS), UMR 7587, Paris, France.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1272-83. doi: 10.1109/TUFFC.2011.1938.

Abstract

A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration.

摘要

一个全波方程,描述了在非均匀衰减介质中的非线性传播,通过时域有限差分法进行数值求解。该数值方法用于模拟诊断超声脉冲通过具有声速、衰减、密度和非线性的异质的人体腹部的传播。传统的延迟求和波束形成用于生成点扩散函数(PSF),显示这些异质的影响。对于所建模的特定成像配置,这些 PSF 表明基本成像中主要的退化源是由于近场结构的混响。与基本成像相比,谐波成像中的混响杂波低 27.1dB。具有均匀速度但阻抗特性不变的模拟组织表明,对于谐波成像,主要的退化源是相位误差。

相似文献

1
Sources of image degradation in fundamental and harmonic ultrasound imaging: a nonlinear, full-wave, simulation study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1272-83. doi: 10.1109/TUFFC.2011.1938.
2
Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):754-65. doi: 10.1109/TUFFC.2011.1868.
3
A heterogeneous nonlinear attenuating full-wave model of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.
4
Effects of nonlinear ultrasound propagation on high intensity brain therapy.
Med Phys. 2011 Mar;38(3):1207-16. doi: 10.1118/1.3531553.
5
Aberration in nonlinear acoustic wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):470-9. doi: 10.1109/tuffc.2007.271.
6
Statistical model of clutter suppression in tissue harmonic imaging.
J Acoust Soc Am. 2011 Mar;129(3):1193-208. doi: 10.1121/1.3504712.
7
Reverberation clutter from subcutaneous tissue layers: simulation and in vivo demonstrations.
Ultrasound Med Biol. 2014 Apr;40(4):714-26. doi: 10.1016/j.ultrasmedbio.2013.11.029. Epub 2014 Feb 14.
8
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.
9
Reverberation clutter induced by nonlinear internal waves in shallow water.
J Acoust Soc Am. 2013 Oct;134(4):EL289-93. doi: 10.1121/1.4818937.
10
Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2255-2263. doi: 10.1109/TUFFC.2018.2865903. Epub 2018 Aug 21.

引用本文的文献

2
Aberration correction in diagnostic ultrasound: A review of the prior field and current directions.
Z Med Phys. 2023 Aug;33(3):267-291. doi: 10.1016/j.zemedi.2023.01.003. Epub 2023 Feb 26.
3
Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1337-1352. doi: 10.1109/TUFFC.2022.3152717. Epub 2022 Mar 30.
4
Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network.
IEEE Trans Med Imaging. 2021 Apr;40(4):1184-1195. doi: 10.1109/TMI.2021.3049307. Epub 2021 Apr 1.
5
Resolution and Speckle Reduction in Cardiac Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1131-1143. doi: 10.1109/TUFFC.2020.3034518. Epub 2021 Mar 26.
6
Closed-Loop Low-Rank Echocardiographic Artifact Removal.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):510-525. doi: 10.1109/TUFFC.2020.3013268. Epub 2021 Feb 25.
7
Viscoelastic Response Ultrasound Derived Relative Elasticity and Relative Viscosity Reflect True Elasticity and Viscosity: In Silico and Experimental Demonstration.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1102-1117. doi: 10.1109/TUFFC.2019.2962789. Epub 2019 Dec 30.
8
The Impact of Acoustic Clutter on Large Array Abdominal Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):703-714. doi: 10.1109/TUFFC.2019.2952797. Epub 2019 Nov 11.
10
Computationally Efficient Implementation of Aperture Domain Model Image Reconstruction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Oct;66(10):1546-1559. doi: 10.1109/TUFFC.2019.2924824. Epub 2019 Jun 26.

本文引用的文献

1
Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):754-65. doi: 10.1109/TUFFC.2011.1868.
2
A heterogeneous nonlinear attenuating full-wave model of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.
3
Experimental investigation of finite amplitude distortion-based, second harmonic pulse echo ultrasonic imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):158-62. doi: 10.1109/58.646920.
4
Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125-39. doi: 10.1109/58.585208.
5
Computer model for harmonic ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(5):1259-72. doi: 10.1109/58.869075.
6
Aberration in nonlinear acoustic wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):470-9. doi: 10.1109/tuffc.2007.271.
7
Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time rates.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Oct;53(10):1832-43. doi: 10.1109/tuffc.2006.115.
8
Computer simulation of forward wave propagation in soft tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1473-82. doi: 10.1109/tuffc.2005.1516019.
9
Simulation of ultrasonic focus aberration and correction through human tissue.
J Acoust Soc Am. 2003 Feb;113(2):1166-76. doi: 10.1121/1.1531986.
10
Nonlinear acoustics in diagnostic ultrasound.
Ultrasound Med Biol. 2002 Jan;28(1):1-18. doi: 10.1016/s0301-5629(01)00463-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验