Institut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) ParisTech, Centre National de la Recherche Scientifique (CNRS), UMR 7587, Paris, France.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jun;58(6):1272-83. doi: 10.1109/TUFFC.2011.1938.
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration.
一个全波方程,描述了在非均匀衰减介质中的非线性传播,通过时域有限差分法进行数值求解。该数值方法用于模拟诊断超声脉冲通过具有声速、衰减、密度和非线性的异质的人体腹部的传播。传统的延迟求和波束形成用于生成点扩散函数(PSF),显示这些异质的影响。对于所建模的特定成像配置,这些 PSF 表明基本成像中主要的退化源是由于近场结构的混响。与基本成像相比,谐波成像中的混响杂波低 27.1dB。具有均匀速度但阻抗特性不变的模拟组织表明,对于谐波成像,主要的退化源是相位误差。