Suppr超能文献

使用超声电流源密度成像(UCSDI)进行心脏激活标测。

Cardiac activation mapping using ultrasound current source density imaging (UCSDI).

作者信息

Olafsson Ragnar, Witte Russell S, Jia Congxian, Huang Sheng-Wen, Kim Kang, O'Donnell Matthew

机构信息

Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):565-74. doi: 10.1109/TUFFC.2009.1073.

Abstract

We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

摘要

我们描述了首次使用超声电流源密度成像(UCSDI)对活体心脏中的生物电流进行测绘。治疗严重心律失常的消融手术需要详细的心脏激活波图谱。传统方法耗时且受其较差的空间分辨率(5 - 10毫米)限制。UCSDI有可能改进现有的测绘方法。它基于压力引起的电阻率变化,即声电(AE)效应,该效应在空间上局限于超声焦点。本文展示了来自2个实验的数据。一个540千赫兹的超声换能器(f/# = 1,焦距 = 90毫米,脉冲重复频率 = 1600赫兹)在灌注了兴奋 - 收缩解偶联剂的离体兔心脏上进行扫描,以在保留电功能的同时显著减少运动。插入左心室的钨电极同时记录AE信号和低频心电图(ECG)。UCSDI显示出与传播的激活波一致的空间和时间模式。根据UCSDI估计的传播速度为0.25 +/- 0.05毫米/毫秒,与通过ECG信号获得的值相当。滤波后最大AE信噪比为18分贝,等效检测阈值为0.1毫安/平方厘米。这项研究表明,UCSDI是一种用于测绘心脏电流流动和生物电位的潜在强大技术。

相似文献

1
Cardiac activation mapping using ultrasound current source density imaging (UCSDI).
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):565-74. doi: 10.1109/TUFFC.2009.1073.
2
Ultrasound current source density imaging.
IEEE Trans Biomed Eng. 2008 Jul;55(7):1840-8. doi: 10.1109/TBME.2008.919115.
4
Ultrasound current source density imaging of the cardiac activation wave using a clinical cardiac catheter.
IEEE Trans Biomed Eng. 2015 Jan;62(1):241-7. doi: 10.1109/TBME.2014.2345771. Epub 2014 Aug 7.
5
Optimizing frequency and pulse shape for ultrasound current source density imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Oct;59(10):2149-55. doi: 10.1109/TUFFC.2012.2441.
6
Measuring the acoustoelectric interaction constant using ultrasound current source density imaging.
Phys Med Biol. 2012 Oct 7;57(19):5929-41. doi: 10.1088/0031-9155/57/19/5929. Epub 2012 Sep 7.
7
Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):420-7. doi: 10.1109/TUFFC.2014.2927.
8
Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo.
Ultrasonics. 2010 Feb;50(2):208-15. doi: 10.1016/j.ultras.2009.09.026. Epub 2009 Oct 2.
9
Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation.
Pacing Clin Electrophysiol. 1991 Apr;14(4 Pt 1):557-76. doi: 10.1111/j.1540-8159.1991.tb02828.x.
10
Effect of varying pacing waveform shapes on propagation and hemodynamics in the rabbit heart.
Am J Cardiol. 1997 Mar 20;79(6A):36-43. doi: 10.1016/s0002-9149(97)00120-3.

引用本文的文献

1
Neuronavigation-Guided Transcranial Acoustoelectric Brain Imaging: A New Modality for High Resolution Electrical Brain Mapping.
IEEE Trans Biomed Eng. 2025 May;72(5):1605-1614. doi: 10.1109/TBME.2024.3514553. Epub 2025 Apr 23.
2
Acoustoelectric Time-Reversal for Ultrasound Phase-Aberration Correction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Aug;70(8):854-864. doi: 10.1109/TUFFC.2023.3292595. Epub 2023 Aug 2.
3
Current Source Density Imaging Using Regularized Inversion of Acoustoelectric Signals.
IEEE Trans Med Imaging. 2023 Mar;42(3):739-749. doi: 10.1109/TMI.2022.3215748. Epub 2023 Mar 2.
4
Biological current source imaging method based on acoustoelectric effect: A systematic review.
Front Neurosci. 2022 Jul 18;16:807376. doi: 10.3389/fnins.2022.807376. eCollection 2022.
5
Selective Mapping of Deep Brain Stimulation Lead Currents Using Acoustoelectric Imaging.
Ultrasound Med Biol. 2018 Nov;44(11):2345-2357. doi: 10.1016/j.ultrasmedbio.2018.06.021. Epub 2018 Aug 14.
6
Application of Acoustic-Electric Interaction for Neuro-Muscular Activity Mapping: A Review.
Eur J Transl Myol. 2015 Jan 21;24(4):4745. doi: 10.4081/ejtm.2014.4745. eCollection 2014 Nov 28.
8
Ultrasound current source density imaging of the cardiac activation wave using a clinical cardiac catheter.
IEEE Trans Biomed Eng. 2015 Jan;62(1):241-7. doi: 10.1109/TBME.2014.2345771. Epub 2014 Aug 7.
9
Design considerations and performance of MEMS acoustoelectric ultrasound detectors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Sep;60(9):1906-16. doi: 10.1109/TUFFC.2013.2775.
10
Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):420-7. doi: 10.1109/TUFFC.2014.2927.

本文引用的文献

1
2
Ultrasound current source density imaging.
IEEE Trans Biomed Eng. 2008 Jul;55(7):1840-8. doi: 10.1109/TBME.2008.919115.
3
Nonlinear estimation of the lateral displacement using tissue incompressibility.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(2):491-503. doi: 10.1109/58.660158.
4
Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(1):82-96. doi: 10.1109/58.741427.
6
On the accuracy of CartoMerge for guiding posterior left atrial ablation in man.
Heart Rhythm. 2007 May;4(5):595-602. doi: 10.1016/j.hrthm.2007.01.033. Epub 2007 Feb 9.
8
Atrial fibrillation ablation: location, location, location.
J Cardiovasc Electrophysiol. 2006 Dec;17(12):1271-3. doi: 10.1111/j.1540-8167.2006.00669.x. Epub 2006 Nov 10.
10
Survey of physician experience, trends and outcomes with atrial fibrillation ablation.
J Interv Card Electrophysiol. 2005 Apr;12(3):213-20. doi: 10.1007/s10840-005-0621-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验