Suppr超能文献

基于声电信号正则化反演的电流源密度成像。

Current Source Density Imaging Using Regularized Inversion of Acoustoelectric Signals.

出版信息

IEEE Trans Med Imaging. 2023 Mar;42(3):739-749. doi: 10.1109/TMI.2022.3215748. Epub 2023 Mar 2.

Abstract

Acoustoelectric (AE) imaging can potentially image biological currents at high spatial (mm) and temporal (ms) resolution. However, it does not directly map the current field distribution due to signal modulation by the acoustic field and electric lead fields. Here we present a new method for current source density (CSD) imaging. The fundamental AE equation is inverted using truncated singular value decomposition (TSVD) combined with Tikhonov regularization, where the optimal regularization parameter is found based on a modified L-curve criterion with TSVD. After deconvolution of acoustic fields, the current field can be directly reconstructed from lead field projections and the CSD image computed from the divergence of that field. A cube phantom model with a single dipole source was used for both simulation and bench-top phantom studies, where 2D AE signals generated by a 0.6 MHz 1.5D array transducer were recorded by orthogonal leads in a 3D Cartesian coordinate system. In simulations, the CSD reconstruction had significantly improved image quality and current source localization compared to AE images, and performance further improved as the fractional bandwidth (BW) increased. Similar results were obtained in the phantom with a time-varying current injected. Finally, a feasibility study using an in vivo swine heart model showed that optimally reconstructed CSD images better localized the current source than AE images over the cardiac cycle.

摘要

声电(AE)成像是一种具有高空间(mm)和时间(ms)分辨率的生物电流成像技术。然而,由于声场和电极场对信号的调制,它并不能直接绘制电流场分布。这里我们提出了一种新的电流源密度(CSD)成像方法。该方法使用截断奇异值分解(TSVD)结合 Tikhonov 正则化来反演基本的 AE 方程,其中最优正则化参数是基于具有 TSVD 的修正 L 曲线准则找到的。在对声场进行反卷积后,可以根据该场的散度直接从电极场投影中重建电流场,并计算 CSD 图像。使用带有单个偶极子源的立方模体进行模拟和台式模体研究,其中通过在 3D 笛卡尔坐标系中使用 0.6 MHz 的 1.5D 阵列换能器生成的 2D AE 信号由正交电极记录。在模拟中,与 AE 图像相比,CSD 重建明显提高了图像质量和电流源定位,并且随着分数带宽(BW)的增加,性能进一步提高。在带有时变电流注入的模体中也得到了类似的结果。最后,使用活体猪心模型进行的可行性研究表明,在整个心动周期内,最优重建的 CSD 图像比 AE 图像更能准确定位电流源。

相似文献

1
Current Source Density Imaging Using Regularized Inversion of Acoustoelectric Signals.
IEEE Trans Med Imaging. 2023 Mar;42(3):739-749. doi: 10.1109/TMI.2022.3215748. Epub 2023 Mar 2.
2
A 3-D reconstruction solution to current density imaging based on acoustoelectric effect by deconvolution: a simulation study.
IEEE Trans Biomed Eng. 2013 May;60(5):1181-90. doi: 10.1109/TBME.2012.2228641. Epub 2012 Nov 21.
3
Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):420-7. doi: 10.1109/TUFFC.2014.2927.
4
Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.
Med Phys. 2020 Apr;47(4):1845-1859. doi: 10.1002/mp.14056. Epub 2020 Feb 26.
5
Complementary Detection of Multiple Electrical Sources in Tissue Using Acoustoelectric Effects.
Ultrasound Med Biol. 2016 Sep;42(9):2323-33. doi: 10.1016/j.ultrasmedbio.2016.05.013. Epub 2016 Jun 30.
9
3D current source density imaging based on the acoustoelectric effect: a simulation study using unipolar pulses.
Phys Med Biol. 2011 Jul 7;56(13):3825-42. doi: 10.1088/0031-9155/56/13/006. Epub 2011 May 31.
10
Spectrotemporal CT data acquisition and reconstruction at low dose.
Med Phys. 2015 Nov;42(11):6317-36. doi: 10.1118/1.4931407.

引用本文的文献

1
Neuronavigation-Guided Transcranial Acoustoelectric Brain Imaging: A New Modality for High Resolution Electrical Brain Mapping.
IEEE Trans Biomed Eng. 2025 May;72(5):1605-1614. doi: 10.1109/TBME.2024.3514553. Epub 2025 Apr 23.
2
Acoustoelectric Time-Reversal for Ultrasound Phase-Aberration Correction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Aug;70(8):854-864. doi: 10.1109/TUFFC.2023.3292595. Epub 2023 Aug 2.

本文引用的文献

1
Living Rat SSVEP Mapping With Acoustoelectric Brain Imaging.
IEEE Trans Biomed Eng. 2022 Jan;69(1):75-82. doi: 10.1109/TBME.2021.3087177. Epub 2021 Dec 23.
4
Mapping Biological Current Densities With Ultrafast Acoustoelectric Imaging: Application to the Beating Rat Heart.
IEEE Trans Med Imaging. 2019 Aug;38(8):1852-1857. doi: 10.1109/TMI.2019.2898090. Epub 2019 Feb 7.
5
Spatiotemporal matrix image formation for programmable ultrasound scanners.
Phys Med Biol. 2018 Feb 6;63(3):03NT03. doi: 10.1088/1361-6560/aaa606.
6
Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view.
Int J Psychophysiol. 2015 Sep;97(3):210-20. doi: 10.1016/j.ijpsycho.2015.05.004. Epub 2015 May 12.
7
Cardiac activation mapping using ultrasound current source density imaging (UCSDI).
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):565-74. doi: 10.1109/TUFFC.2009.1073.
8
Review on solving the inverse problem in EEG source analysis.
J Neuroeng Rehabil. 2008 Nov 7;5:25. doi: 10.1186/1743-0003-5-25.
9
Ultrasound current source density imaging.
IEEE Trans Biomed Eng. 2008 Jul;55(7):1840-8. doi: 10.1109/TBME.2008.919115.
10
Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
IEEE Trans Biomed Eng. 2008 Apr;55(4):1327-35. doi: 10.1109/TBME.2007.912404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验