Suppr超能文献

Urothelial overexpression of insulin-like growth factor-1 increases susceptibility to p-cresidine-induced bladder carcinogenesis in transgenic mice.

作者信息

Hursting Stephen D, Perkins Susan N, Lavigne Jackie A, Beltran Linda, Haines Diana C, Hill Heather L, Alvord W Gregory, Barrett J Carl, DiGiovanni John

机构信息

Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Mol Carcinog. 2009 Aug;48(8):671-7. doi: 10.1002/mc.20548.

Abstract

To establish a role for insulin-like growth factor-1 (IGF-1) in bladder cancer susceptibility, we tested the effect of p-cresidine, a potent bladder carcinogen, in transgenic (TG) mice with human IGF-1 expression in the bladder driven by the bovine keratin 5 promoter (referred to as BK5.IGF-1 TG mice). Indomethacin was also tested to determine if the cyclooxygenase (COX) pathway is a target for bladder cancer prevention in this model. Thirty-three female BK5.IGF-1 TG mice and 29 female nontransgenic littermates were randomized to the following treatments: (1) AIN-76A diet; (2) AIN-76A diet with 0.5% p-cresidine; or (3) AIN-76A diet with 0.5% p-cresidine + 0.00075% indomethacin. BK5.IGF-1 TG mice, with twofold greater total serum IGF-1 than nontransgenic mice, exhibited greatly increased susceptibility to p-cresidine-induced bladder tumors compared to nontransgenic mice. The most common type of bladder tumor in the BK5.IGF-1 TG mice was transitional cell carcinoma, which is the predominant type of bladder cancer observed in developed countries. Indomethacin inhibition of bladder tumor development in BK5.IGF-1 TG mice was not statistically significant. These results present further evidence for the role of IGF-1 in bladder cancer progression. In addition, these transgenic mice provide a useful model for studying the role of the IGF-1 pathway in bladder carcinogenesis and its prevention.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验