Chen Mingjun, Wu Chunya, Song Daiping, Dong Wenman, Li Kai
Center for Precision Engineering, Harbin Institute of Technology, Harbin, 150001, China.
J Mater Sci Mater Med. 2009 Sep;20(9):1831-8. doi: 10.1007/s10856-009-3759-4. Epub 2009 May 6.
Molecular dynamics (MD) simulations have been performed to investigate the adsorption mechanism of Arg-Gly-Asp (RGD) tripeptide onto perfect and grooved rutile TiO(2) (110) surfaces, respectively. The simulation results suggest that RGD tripeptide can strongly adsorb onto TiO(2) surface through specified Ti coordination sites. Analysis of adsorption energy, mean-squared displacements and radial distribution functions indicates that the adsorption of RGD onto grooved surface is more stable and rapid than that onto the perfect surface, with the adsorption energy around -331.59 kcal/mol. And among the chosen groove surfaces, adsorption energies, adsorption speeds and adsorption depths of RGD onto the surfaces increase evidently with the extension of groove dimensions. For both perfect and grooved surfaces, once bonded to the surfaces by interactions of carboxyl groups or carbonyl groups with nearby surface Ti atoms, RGD tripeptides show a reasonable propensity to remain there and undergo relatively limited hinge-bending motions.
已进行分子动力学(MD)模拟,分别研究精氨酸 - 甘氨酸 - 天冬氨酸(RGD)三肽在完美和平整带沟槽的金红石型TiO₂(110)表面上的吸附机制。模拟结果表明,RGD三肽可通过特定的钛配位位点强烈吸附在TiO₂表面。对吸附能、均方位移和径向分布函数的分析表明,RGD在带沟槽表面的吸附比在完美表面更稳定、更迅速,吸附能约为 -331.59千卡/摩尔。在所选的沟槽表面中,RGD在这些表面上的吸附能、吸附速度和吸附深度随着沟槽尺寸的增加而明显增加。对于完美表面和带沟槽表面,一旦通过羧基或羰基与附近表面钛原子的相互作用与表面结合,RGD三肽就表现出合理的倾向留在那里并经历相对有限的铰链弯曲运动。