Suppr超能文献

三肽 RGD 在水相溶液中在锐钛矿 TiO(2) 纳米形貌表面的吸附。

Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.

机构信息

Precision Engineering Research Institute, Harbin Institute of Technology, Harbin, China.

出版信息

Acta Biomater. 2010 Feb;6(2):684-94. doi: 10.1016/j.actbio.2009.07.032. Epub 2009 Jul 28.

Abstract

Molecular dynamics simulations were carried out to investigate the adsorption mechanisms of tripeptide Arg-Gly-Asp (RGD) on the nanotopography and perfect rutile TiO(2) (110) surfaces in aqueous solution. It is shown that the amino groups (NH(2) and NH3+) and carboxyl group (COO(-)) of RGD are the main groups bonding to hydrophilic TiO(2) surface by electrostatic and van der Waals interactions. It is also demonstrated that RGD adsorbs much more rapidly and stably on the nanotopography surface than the perfect surface. On the hydrophilic TiO(2) surface, the water molecules occupy the adsorption sites to form hydration layers, which have a significant influence on RGD adsorption. On the perfect surface, since the fivefold titanium atom is surrounded by surface bridging oxygen atoms above it and has a water molecule bonding to it, the amino group NH(2) is the adsorption group. However, because the pit surface exposes more adsorption sites and has higher surface energy, RGD can adsorb rapidly on the surfaces by amino groups NH(2) and NH3+, and the carboxyl group COO(-) may edge out the adsorbed water molecules and bond to the surface titanium atom. Moreover, the surface with higher surface energy has more adsorption energy of RGD.

摘要

采用分子动力学模拟方法研究了三肽精氨酸-甘氨酸-天冬氨酸(RGD)在水相溶液中于纳米形貌和完美锐钛矿 TiO(2)(110)表面的吸附机制。结果表明,RGD 的氨基(NH(2)和 NH3+)和羧基(COO(-))基团通过静电和范德华相互作用与亲水 TiO(2)表面发生主要键合。同时也表明,RGD 在纳米形貌表面上的吸附比在完美表面上的吸附更快、更稳定。在亲水 TiO(2)表面上,水分子占据吸附位形成水合层,这对 RGD 的吸附有显著影响。在完美表面上,由于五配位钛原子被其上方的表面桥氧原子和与之相连的水分子所包围,氨基 NH(2)是吸附基团。然而,由于凹坑表面暴露出更多的吸附位和更高的表面能,RGD 可以通过氨基 NH(2)和 NH3+迅速吸附在表面上,而羧基 COO(-)可能会取代吸附的水分子并与表面钛原子键合。此外,表面能较高的表面对 RGD 的吸附能更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验