Suppr超能文献

基于功能的人类皮质解剖学的组间配准。

Function-based intersubject alignment of human cortical anatomy.

机构信息

Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cereb Cortex. 2010 Jan;20(1):130-40. doi: 10.1093/cercor/bhp085.

Abstract

Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigm--viewing static images of objects and faces--and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis.

摘要

要对人类大脑的功能神经解剖组织得出结论,需要有一种将个体大脑的功能解剖与群体变异性相关联的方法。我们已经开发出一种基于观看电影时引发的神经活动模式来对个体大脑的功能神经解剖进行配准的方法。这种方法不是基于功能定义的区域进行配准,而是基于响应模式进行配准,这些模式在皮质区域内和跨皮质区域分布。该方法是在膨胀的球形皮质表面的二维流形上实现的。尽管该方法是使用电影数据开发的,但它成功地推广到了使用另一种认知激活范式(观看物体和面孔的静态图像)获得的数据,并通过标准的广义线性模型(GLM)分析改善了该实验中的组统计数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0b/2792192/2230b12b71d4/cercorbhp085f01_ht.jpg

相似文献

1
Function-based intersubject alignment of human cortical anatomy.
Cereb Cortex. 2010 Jan;20(1):130-40. doi: 10.1093/cercor/bhp085.
2
Inter-subject alignment of human cortical anatomy using functional connectivity.
Neuroimage. 2013 Nov 1;81:400-411. doi: 10.1016/j.neuroimage.2013.05.009. Epub 2013 May 14.
3
A new cortical surface parcellation model and its automatic implementation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):193-200. doi: 10.1007/11866763_24.
4
Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.
Neuroimage. 2013 Feb 1;66:457-68. doi: 10.1016/j.neuroimage.2012.10.080. Epub 2012 Nov 6.
5
Intersubject variability in cortical activations during a complex language task.
Neuroimage. 2000 Sep;12(3):326-39. doi: 10.1006/nimg.2000.0621.
6
Anatomically informed convolution kernels for the projection of fMRI data on the cortical surface.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):300-7. doi: 10.1007/11866763_37.
7
Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps.
Inf Process Med Imaging. 2015;24:474-87. doi: 10.1007/978-3-319-19992-4_37.
8
Quantitative evaluation of LDDMM, FreeSurfer, and CARET for cortical surface mapping.
Neuroimage. 2010 Aug 1;52(1):131-41. doi: 10.1016/j.neuroimage.2010.03.085. Epub 2010 Apr 8.
9
Automatic labelling of the human cortical surface using sulcal basins.
Med Image Anal. 2000 Sep;4(3):179-88. doi: 10.1016/s1361-8415(00)00024-4.

引用本文的文献

1
Pseudo-Rendering for Resolution and Topology-Invariant Cortical Parcellation.
Mach Learn Med Imaging. 2025;15242:74-84. doi: 10.1007/978-3-031-73290-4_8. Epub 2024 Oct 23.
2
Integrating anatomical and functional landmarks for interparticipant alignment of imaging data.
Imaging Neurosci (Camb). 2024 Aug 1;2. doi: 10.1162/imag_a_00253. eCollection 2024.
4
A Unifying Model for Discordant and Concordant Results in Human Neuroimaging Studies of Facial Viewpoint Selectivity.
J Neurosci. 2024 Apr 24;44(17):e0296232024. doi: 10.1523/JNEUROSCI.0296-23.2024.
6
BAYESIAN FUNCTIONAL REGISTRATION OF FMRI ACTIVATION MAPS.
Ann Appl Stat. 2022 Sep;16(3):1676-1699. doi: 10.1214/21-aoas1562. Epub 2022 Jul 19.
7
The subcortical and neurochemical organization of the ventral and dorsal attention networks.
Commun Biol. 2022 Dec 7;5(1):1343. doi: 10.1038/s42003-022-04281-0.
9
Procrustes Analysis for High-Dimensional Data.
Psychometrika. 2022 Dec;87(4):1422-1438. doi: 10.1007/s11336-022-09859-5. Epub 2022 May 18.
10
An empirical evaluation of functional alignment using inter-subject decoding.
Neuroimage. 2021 Dec 15;245:118683. doi: 10.1016/j.neuroimage.2021.118683. Epub 2021 Oct 26.

本文引用的文献

1
Face-specific processing in the human fusiform gyrus.
J Cogn Neurosci. 1997 Fall;9(5):605-10. doi: 10.1162/jocn.1997.9.5.605.
2
Two takes on the social brain: a comparison of theory of mind tasks.
J Cogn Neurosci. 2007 Nov;19(11):1803-14. doi: 10.1162/jocn.2007.19.11.1803.
3
Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation.
Cereb Cortex. 2007 Apr;17(4):766-77. doi: 10.1093/cercor/bhk030. Epub 2006 May 12.
4
Simplified intersubject averaging on the cortical surface using SUMA.
Hum Brain Mapp. 2006 Jan;27(1):14-27. doi: 10.1002/hbm.20158.
5
Decoding the visual and subjective contents of the human brain.
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
6
Predicting the orientation of invisible stimuli from activity in human primary visual cortex.
Nat Neurosci. 2005 May;8(5):686-91. doi: 10.1038/nn1445. Epub 2005 Apr 24.
7
Unraveling multisensory integration: patchy organization within human STS multisensory cortex.
Nat Neurosci. 2004 Nov;7(11):1190-2. doi: 10.1038/nn1333. Epub 2004 Oct 10.
9
10
Intersubject synchronization of cortical activity during natural vision.
Science. 2004 Mar 12;303(5664):1634-40. doi: 10.1126/science.1089506.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验