Suppr超能文献

阻抗控制及其与口面部运动精度的关系。

Impedance control and its relation to precision in orofacial movement.

作者信息

Laboissière Rafael, Lametti Daniel R, Ostry David J

机构信息

Institut National de la Santé et de la Recherche Médicale, U864, Espace et Action, Lyon, France.

出版信息

J Neurophysiol. 2009 Jul;102(1):523-31. doi: 10.1152/jn.90948.2008. Epub 2009 May 6.

Abstract

Speech production involves some of the most precise and finely timed patterns of human movement. Here, in the context of jaw movement in speech, we show that spatial precision in speech production is systematically associated with the regulation of impedance and in particular, with jaw stiffness--a measure of resistance to displacement. We estimated stiffness and also variability during movement using a robotic device to apply brief force pulses to the jaw. Estimates of stiffness were obtained using the perturbed position and force trajectory and an estimate of what the trajectory would be in the absence of load. We estimated this "reference trajectory" using a new technique based on Fourier analysis. A moving-average (MA) procedure was used to estimate stiffness by modeling restoring force as the moving average of previous jaw displacements. The stiffness matrix was obtained from the steady state of the MA model. We applied this technique to data from 31 subjects whose jaw movements were perturbed during speech utterances and kinematically matched nonspeech movements. We observed systematic differences in stiffness over the course of jaw-lowering and jaw-raising movements that were correlated with measures of kinematic variability. Jaw stiffness was high and variability was low early and late in the movement when the jaw was elevated. Stiffness was low and variability was high in the middle of movement when the jaw was lowered. Similar patterns were observed for speech and nonspeech conditions. The systematic relationship between stiffness and variability points to the idea that stiffness regulation is integral to the control of orofacial movement variability.

摘要

言语产生涉及一些人类运动中最精确且时间安排最精细的模式。在此,在言语中下颌运动的背景下,我们表明言语产生中的空间精度与阻抗调节系统地相关,特别是与下颌刚度相关——下颌刚度是对位移阻力的一种度量。我们使用一个机器人设备向下颌施加短暂的力脉冲来估计运动过程中的刚度以及变异性。刚度估计是通过使用受扰位置和力轨迹以及在无负载情况下轨迹的估计值来获得的。我们使用一种基于傅里叶分析的新技术来估计这个“参考轨迹”。使用移动平均(MA)程序通过将恢复力建模为先前下颌位移的移动平均来估计刚度。刚度矩阵是从MA模型的稳态获得的。我们将此技术应用于31名受试者的数据,这些受试者在言语发声过程中下颌运动受到扰动,以及在运动学上匹配的非言语运动。我们观察到在降下颌和升下颌运动过程中刚度存在系统差异,这些差异与运动学变异性的度量相关。当下颌抬起时,运动早期和晚期下颌刚度高且变异性低。当下颌降低时,运动中间刚度低且变异性高。在言语和非言语条件下观察到类似的模式。刚度和变异性之间的系统关系表明刚度调节是口面部运动变异性控制所不可或缺的。

相似文献

1
Impedance control and its relation to precision in orofacial movement.阻抗控制及其与口面部运动精度的关系。
J Neurophysiol. 2009 Jul;102(1):523-31. doi: 10.1152/jn.90948.2008. Epub 2009 May 6.
3
Voluntary control of human jaw stiffness.人类颌骨刚度的自主控制。
J Neurophysiol. 2005 Sep;94(3):2207-17. doi: 10.1152/jn.00164.2005. Epub 2005 Jun 22.

引用本文的文献

1
Coupling dynamics in speech gestures: amplitude and rate influences.言语手势中的耦合动力学:幅度和速率的影响
Exp Brain Res. 2017 Aug;235(8):2495-2510. doi: 10.1007/s00221-017-4983-7. Epub 2017 May 17.
4
Postural constraints on movement variability.姿势对运动变异性的限制。
J Neurophysiol. 2010 Aug;104(2):1061-7. doi: 10.1152/jn.00306.2010. Epub 2010 Jun 16.

本文引用的文献

2
Noise in the nervous system.神经系统中的噪音。
Nat Rev Neurosci. 2008 Apr;9(4):292-303. doi: 10.1038/nrn2258.
3
Control of movement variability and the regulation of limb impedance.运动变异性的控制与肢体阻抗的调节。
J Neurophysiol. 2007 Dec;98(6):3516-24. doi: 10.1152/jn.00970.2007. Epub 2007 Oct 3.
7
Voluntary control of human jaw stiffness.人类颌骨刚度的自主控制。
J Neurophysiol. 2005 Sep;94(3):2207-17. doi: 10.1152/jn.00164.2005. Epub 2005 Jun 22.
8
Learning to control arm stiffness under static conditions.学习在静态条件下控制手臂的僵硬度。
J Neurophysiol. 2004 Dec;92(6):3344-50. doi: 10.1152/jn.00596.2004. Epub 2004 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验