Suppr超能文献

[连续小波变换系数域中图形视觉诱发电位参数测量精度的提高]

[Improvement of the PERG parameters measurement accuracy in the continuous wavelet transform coefficients domain].

作者信息

Penkala Krzysztof, Jaskuła Marek, Lubiński Wojciech

机构信息

Zakład Cybernetyki i Elektroniki Instytutu Elektroniki, Telekomunikacji i Informatyki Wydziału Elektrycznego Politechniki Szczecińskiej ul. W. Sikorskiego 37, 70-313 Szczecin.

出版信息

Ann Acad Med Stetin. 2007;53 Suppl 1:58-60; discussion 61.

Abstract

PURPOSE

To determine parameters of the pattern electroretinogram (PERG) waveforms in the continuous wavelet transform (CWT) coefficients domain important in more precise clinical assessment of the recordings.

MATERIAL AND METHODS

102 normal PERG recordings were studied in two age groups (< or = 50 years, > 50 years). Continuous wavelet transform analysis was performed using the MatLab 7.0 software. Various wavelets were used in the experiments. Mother wavelets selection was optimized with the criterion based on minimal scatter of the results for normal PERG waveforms.

RESULTS

Comparison with traditional, time-domain based analysis showed that determining the PERG parameters in CWT domain was achieved with better accuracy. Normal values for the test showed much less scatter. It was shown on some clinical examples (glaucomatous patients) that the sensitivity of the test was improved.

CONCLUSIONS

The CWT-based method of the PERG signal analysis is useful in clinical differentiation between normal and abnormal waveforms, particularly in objective early detection of glaucoma.

摘要

目的

确定在连续小波变换(CWT)系数域中模式视网膜电图(PERG)波形的参数,这些参数对于更精确地临床评估记录很重要。

材料与方法

在两个年龄组(≤50岁,>50岁)中研究了102份正常PERG记录。使用MatLab 7.0软件进行连续小波变换分析。实验中使用了各种小波。基于正常PERG波形结果的最小离散度标准对母小波进行了优化选择。

结果

与传统的基于时域的分析相比,结果表明在CWT域中确定PERG参数具有更高的准确性。测试的正常值离散度小得多。在一些临床实例(青光眼患者)中表明,该测试的敏感性有所提高。

结论

基于CWT的PERG信号分析方法有助于临床区分正常和异常波形,特别是在青光眼的客观早期检测中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验