Suppr超能文献

基于小波分析的全局闪烁多焦视网膜电图在青光眼检测中的应用。

Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram.

机构信息

Department of Electronics, Biomedical Engineering Group, University of Alcalá, 28701 Alcalá de Henares, Spain.

出版信息

Med Eng Phys. 2010 Jul;32(6):617-22. doi: 10.1016/j.medengphy.2010.02.019. Epub 2010 Mar 29.

Abstract

The current clinical analysis of the multifocal electroretinography (mfERG) recordings for detecting glaucoma is based on standard signal morphology, measuring amplitudes and latencies. However, this analysis is not sensitive enough for detection of small changes in the multifocal electroretinogram signals. Other, more sophisticated, analysis methods should be explored to improve the sensitivity of this diagnostic technique, such as the discrete wavelet transform, proposed in this paper. We present an alternative method for the detection of open angle glaucoma based on the characterization of global flash mfERG signals. The digital signal processing technique is based on wavelets, hitherto unused in this field, for detection of advanced-stage glaucoma. Two markers were obtained from the recorded signals by applying the discrete wavelet transform, which help discriminate healthy from glaucomatous signals.

摘要

目前,对多焦视网膜电图 (mfERG) 记录进行青光眼检测的临床分析基于标准信号形态,测量幅度和潜伏期。然而,这种分析对于检测多焦视网膜电图信号的微小变化不够敏感。应该探索其他更复杂的分析方法来提高这种诊断技术的灵敏度,例如本文提出的离散小波变换。我们提出了一种基于全局闪光 mfERG 信号特征的开角型青光眼检测的替代方法。数字信号处理技术基于迄今在该领域未使用过的小波,用于检测晚期青光眼。通过应用离散小波变换从记录信号中获得了两个标记,这些标记有助于区分健康和青光眼信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验