Skvortsov A M, Klushin L I, Fleer G J, Leermakers F A M
Chemical-Pharmaceutical Academy, Prof. Popova 14, 197022 St. Petersburg, Russia.
J Chem Phys. 2009 May 7;130(17):174704. doi: 10.1063/1.3110604.
We consider the mechanical desorption of an infinitely long lattice polymer chain tethered at one end to an adsorbing surface. The external force is applied to the free end of the chain and is normal to the surface. There is a critical value of the desorption force f(tr) at which the chain desorbs in a first-order phase transition. We present the phase diagram for mechanical desorption with exact analytical solutions for the detachment curve: the dependence of f(tr) on the adsorption energy epsilon (at fixed temperature T) and on T (at fixed epsilon). For most lattice models f(tr)(T) displays a maximum. This implies that at some given force the chain is adsorbed in a certain temperature window and desorbed outside it: the stretched state is re-entered at low temperature. We also discuss the energy and heat capacity as a function of T; these quantities display a jump at the transition(s). We analyze short-range and long-range excluded-volume effects on the detachment curve f(tr)(T). For short-range effects (local stiffness), the maximum value of f(tr) decreases with stiffness, and the force interval where re-entrance occurs become narrower for stiffer chains. For long-range excluded-volume effects we propose a scaling f(tr) approximately T(1-nu)(T(c)-T)(nu/phi) around the critical temperature T(c), where nu=0.588 is the Flory exponent and phi approximately 0.5 the crossover exponent, and we estimated the amplitude. We compare our results for a model where immediate step reversals are forbidden with recent self-avoiding walk simulations. We conclude that re-entrance is the general situation for lattice models. Only for a zigzag lattice model (where both forward and back steps are forbidden) is the coexistence curve f(tr)(T) monotonic, so that there is no re-entrance.
我们考虑一端固定在吸附表面上的无限长晶格聚合物链的机械解吸。外力施加在链的自由端且垂直于表面。存在一个解吸力(f(tr))的临界值,在该值时链以一阶相变的方式解吸。我们给出了机械解吸的相图,并给出了分离曲线的精确解析解:(f(tr))对吸附能(\epsilon)(在固定温度(T)下)以及对(T)(在固定(\epsilon)下)的依赖关系。对于大多数晶格模型,(f(tr)(T))呈现出一个最大值。这意味着在某个给定的力下,链在特定的温度窗口内被吸附,而在该窗口外被解吸:在低温下会重新进入拉伸状态。我们还讨论了能量和热容量作为(T)的函数;这些量在转变点处会出现跃变。我们分析了短程和长程排除体积效应在分离曲线(f(tr)(T))上的影响。对于短程效应(局部刚度),(f(tr))的最大值随着刚度的增加而减小,并且对于更硬的链,发生重新进入的力区间会变窄。对于长程排除体积效应,我们提出在临界温度(T(c))附近的标度关系(f(tr)\approx T^{(1 - \nu)}(T(c) - T)^{\nu / \phi}),其中(\nu = 0.588)是弗洛里指数,(\phi\approx 0.5)是交叉指数,并且我们估计了振幅。我们将禁止立即步反转的模型的结果与最近的自回避行走模拟进行了比较。我们得出结论,重新进入是晶格模型的普遍情况。只有对于锯齿形晶格模型(其中向前和向后的步都被禁止),共存曲线(f(tr)(T))才是单调的,因此不存在重新进入。