Suppr超能文献

美国堪萨斯州饮用水水库中土臭素相关味觉和气味的预测模型开发。

Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs.

作者信息

Dzialowski Andrew R, Smith Val H, Huggins Donald G, Denoyelles Frank, Lim Niang-Choo, Baker Debbie S, Beury Jason H

机构信息

Central Plains Center for BioAssessment, University of Kansas, Lawrence, KS 66047, USA.

出版信息

Water Res. 2009 Jun;43(11):2829-40. doi: 10.1016/j.watres.2009.04.001. Epub 2009 Apr 14.

Abstract

The presence of taste and odor compounds can greatly reduce the quality of drinking water supplies. Because the monetary costs associated with the removal of these compounds can be high, it is impractical for most facilities to continuously treat their raw water. Instead, new tools are needed to help predict when taste and odor events may be most likely to occur. Water quality data were collected between June and October in 2006-2007 from five Kansas (USA) reservoirs in order to develop predictive models for geosmin, a major taste and odor compound; two of these reservoirs were also sampled during specific taste and odor events in December 2006 and January 2007. Lake trophic state alone was not a good predictor of geosmin concentrations as the highest average geosmin concentration was observed in the reservoir with the lowest nutrient and chlorophyll a concentrations. In addition, taste and odor events were not confined to summer months; elevated geosmin concentrations were observed in several reservoirs during the winter. Growth limitation by inorganic phosphorus appeared to be the primary determinant of geosmin production by algal cells in these reservoirs.

摘要

味觉和气味化合物的存在会大大降低饮用水供应的质量。由于去除这些化合物的成本可能很高,对于大多数设施来说,持续处理原水是不切实际的。相反,需要新的工具来帮助预测味觉和气味事件最可能发生的时间。2006年6月至10月期间,从美国堪萨斯州的五个水库收集了水质数据,以便为主要的味觉和气味化合物土臭素建立预测模型;其中两个水库还在2006年12月和2007年1月的特定味觉和气味事件期间进行了采样。仅湖泊营养状态并不是土臭素浓度的良好预测指标,因为在营养物和叶绿素a浓度最低的水库中观察到了最高的平均土臭素浓度。此外,味觉和气味事件并不局限于夏季;在冬季,几个水库中也观察到土臭素浓度升高。无机磷的生长限制似乎是这些水库中藻类细胞产生土臭素的主要决定因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验