Schoepp-Cothenet Barbara, Lieutaud Clément, Baymann Frauke, Verméglio André, Friedrich Thorsten, Kramer David M, Nitschke Wolfgang
Laboratoire de Bioénergétique et Ingénierie des Protéines, Unité Propre de Recherche 9036, Institut Fédératif de Recherche 88, Centre National de la Recherche Scientifique, F-13402 Marseille Cedex 20, France.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8549-54. doi: 10.1073/pnas.0813173106. Epub 2009 May 8.
Purple bacteria have thus far been considered to operate light-driven cyclic electron transfer chains containing ubiquinone (UQ) as liposoluble electron and proton carrier. We show that in the purple gamma-proteobacterium Halorhodospira halophila, menaquinone-8 (MK-8) is the dominant quinone component and that it operates in the Q(B)-site of the photosynthetic reaction center (RC). The redox potentials of the photooxidized pigment in the RC and of the Rieske center of the bc(1) complex are significantly lower (E(m) = +270 mV and +110 mV, respectively) than those determined in other purple bacteria but resemble those determined for species containing MK as pool quinone. These results demonstrate that the photosynthetic cycle in H. halophila is based on MK and not on UQ. This finding together with the unusual organization of genes coding for the bc(1) complex in H. halophila suggests a specific scenario for the evolutionary transition of bioenergetic chains from the low-potential menaquinones to higher-potential UQ in the proteobacterial phylum, most probably induced by rising levels of dioxygen 2.5 billion years ago. This transition appears to necessarily proceed through bioenergetic ambivalence of the respective organisms, that is, to work both on MK- and on UQ-pools. The establishment of the corresponding low- and high-potential chains was accompanied by duplication and redox optimization of the bc(1) complex or at least of its crucial subunit oxidizing quinols from the pool, the Rieske protein. Evolutionary driving forces rationalizing the empirically observed redox tuning of the chain to the quinone pool are discussed.
迄今为止,紫色细菌被认为通过含有泛醌(UQ)作为脂溶性电子和质子载体的光驱动循环电子传递链来运作。我们发现,在紫色γ-变形菌嗜盐嗜盐红螺菌中,甲基萘醌-8(MK-8)是主要的醌成分,并且它在光合反应中心(RC)的Q(B)位点发挥作用。RC中光氧化色素以及bc(1)复合物的 Rieske 中心的氧化还原电位明显低于在其他紫色细菌中测定的值(分别为E(m) = +270 mV和 +110 mV),但与以MK作为池醌的物种中测定的值相似。这些结果表明,嗜盐嗜盐红螺菌中的光合循环基于MK而非UQ。这一发现与嗜盐嗜盐红螺菌中编码bc(1)复合物的基因的异常组织一起,为变形菌门中生物能量链从低电位甲基萘醌向高电位UQ的进化转变提出了一种特定的设想,很可能是由25亿年前氧气水平的上升所诱导的。这种转变似乎必然要经过相应生物体的生物能量矛盾状态,也就是说,要同时作用于MK池和UQ池。相应的低电位和高电位链的建立伴随着bc(1)复合物或至少其从池中氧化醌醇的关键亚基 Rieske 蛋白的复制和氧化还原优化。讨论了使经验观察到的链对醌池的氧化还原调节合理化的进化驱动力。