Suppr超能文献

细菌视紫红质的阳离子结合。

Cation binding by bacteriorhodopsin.

机构信息

University of Illinois, Department of Physiology and Biophysics, 407 South Goodwin Avenue, 524 Burrill Hall, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 1985 Jan;82(2):396-400. doi: 10.1073/pnas.82.2.396.

Abstract

We have found that extensively washed purple membrane has about 1 calcium and 3-4 magnesium ions bound per bacteriorhodopsin molecule. When these divalent cations are removed by any of a variety of means, the pigment changes its color from purple to blue (lambda(max) approximately 600 nm). This blue pigment, which can be formed at near neutral pH, is probably very similar to blue species formed when the pH of a purple membrane sample is lowered to approximately 2. When any of a wide variety of cations are added to a blue membrane preparation, the characteristic purple color of bacteriorhodopsin returns. Divalent and trivalent cations are much more efficient than monovalent cations in restoring the purple color and are effective at a ratio approaching one cation per pigment molecule. Besides shifting the absorption spectrum, removal of the divalent cations drastically alters the photochemical cycle of bacteriorhodopsin, including abolishing the unprotonated Schiff base (M-type) intermediate. Finally, lanthanum not only displaces the divalent cations normally bound to the purple membrane but also greatly reduces both the rate of decay of the M412 intermediate and proton uptake.

摘要

我们发现,经过充分洗涤的紫色膜每分子视紫红质结合约 1 个钙离子和 3-4 个镁离子。当这些二价阳离子通过各种方法去除时,色素会从紫色变为蓝色(最大吸收波长约为 600nm)。这种蓝色色素可以在近中性 pH 值下形成,可能与将紫色膜样品的 pH 值降低至约 2 时形成的蓝色物种非常相似。当将各种阳离子中的任何一种添加到蓝色膜制剂中时,视紫红质的典型紫色会恢复。二价和三价阳离子比单价阳离子更有效地恢复紫色,并在接近每个色素分子一个阳离子的比例下有效。除了改变吸收光谱外,去除二价阳离子还会极大地改变视紫红质的光化学循环,包括消除未质子化的希夫碱(M 型)中间产物。最后,镧不仅取代了通常与紫色膜结合的二价阳离子,还大大降低了 M412 中间产物的衰减速率和质子摄取速率。

相似文献

1
Cation binding by bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1985 Jan;82(2):396-400. doi: 10.1073/pnas.82.2.396.
2
Mechanism and role of divalent cation binding of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):731-9. doi: 10.1016/S0006-3495(86)83699-2.
3
Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149-53. doi: 10.1073/pnas.88.1.149.
5
Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment.
Biophys J. 1988 Aug;54(2):227-32. doi: 10.1016/S0006-3495(88)82951-5.
6
On the molecular mechanisms of the Schiff base deprotonation during the bacteriorhodopsin photocycle.
Proc Natl Acad Sci U S A. 1986 Nov;83(22):8580-4. doi: 10.1073/pnas.83.22.8580.
10
Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1987 Jun;84(11):3681-4. doi: 10.1073/pnas.84.11.3681.

引用本文的文献

1
Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway.
ACS Phys Chem Au. 2023 May 3;3(4):320-333. doi: 10.1021/acsphyschemau.3c00003. eCollection 2023 Jul 26.
2
HwMR is a novel magnesium-associated protein.
Biophys J. 2022 Jul 19;121(14):2781-2793. doi: 10.1016/j.bpj.2022.06.010. Epub 2022 Jun 10.
3
Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor.
Biophys J. 2020 Apr 21;118(8):1838-1849. doi: 10.1016/j.bpj.2020.02.027. Epub 2020 Mar 7.
5
Brighter than the sun: Rajni Govindjee at 80 and her fifty years in photobiology.
Photosynth Res. 2015 Apr;124(1):1-5. doi: 10.1007/s11120-015-0106-0. Epub 2015 Mar 5.
6
Nature of the individual Ca binding sites in Ca-regenerated bacteriorhodopsin.
Biophys J. 1992 May;61(5):1201-6. doi: 10.1016/S0006-3495(92)81929-X.
8
Quantum efficiency of the photochemical cycle of bacteriorhodopsin.
Biophys J. 1990 Sep;58(3):597-608. doi: 10.1016/S0006-3495(90)82403-6.

本文引用的文献

1
The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium.
Biophys J. 1980 May;30(2):231-42. doi: 10.1016/S0006-3495(80)85091-0.
2
Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.
J Gen Physiol. 1981 Apr;77(4):445-73. doi: 10.1085/jgp.77.4.445.
3
Path of the polypeptide in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023-7. doi: 10.1073/pnas.77.4.2023.
5
Salt and pH-dependent changes of the purple membrane absorption spectrum.
Photochem Photobiol. 1984 Nov;40(5):641-6. doi: 10.1111/j.1751-1097.1984.tb05353.x.
6
The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin.
Eur J Biochem. 1984 Jan 16;138(2):349-56. doi: 10.1111/j.1432-1033.1984.tb07922.x.
7
Bacteriorhodopsin and related pigments of halobacteria.
Annu Rev Biochem. 1982;51:587-616. doi: 10.1146/annurev.bi.51.070182.003103.
8
Rhodopsin-like protein from the purple membrane of Halobacterium halobium.
Nat New Biol. 1971 Sep 29;233(39):149-52. doi: 10.1038/newbio233149a0.
9
Improved isolation procedures for the purple membrane of Halobacterium halobium.
Prep Biochem. 1975;5(2):161-78. doi: 10.1080/00327487508061568.
10
Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin.
Biochemistry. 1979 Sep 18;18(19):4100-7. doi: 10.1021/bi00586a007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验