Zhao Xiurong, Strong Roger, Zhang Jie, Sun Guanghua, Tsien Joe Z, Cui Zhenzhong, Grotta James C, Aronowski Jaroslaw
Stroke Program, Department of Neurology, University of Texas, Houston, Medical School, Houston, Texas 77030, USA.
J Neurosci. 2009 May 13;29(19):6186-95. doi: 10.1523/JNEUROSCI.5857-08.2009.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a role in regulating a myriad of biological processes in virtually all brain cell types, including neurons. We and others have reported recently that drugs which activate PPARgamma are effective in reducing damage to brain in distinct models of brain disease, including ischemia. However, the cell type responsible for PPARgamma-mediated protection has not been established. In response to ischemia, PPARgamma gene is robustly upregulated in neurons, suggesting that neuronal PPARgamma may be a primary target for PPARgamma-agonist-mediated neuroprotection. To understand the contribution of neuronal PPARgamma to ischemic injury, we generated conditional neuron-specific PPARgamma knock-out mice (N-PPARgamma-KO). These mice are viable and appeared to be normal with respect to their gross behavior and brain anatomy. However, neuronal PPARgamma deficiency caused these mice to experience significantly more brain damage and oxidative stress in response to middle cerebral artery occlusion. The primary cortical neurons harvested from N-PPARgamma-KO mice, but not astroglia, exposed to ischemia in vitro demonstrated more damage and a reduced expression of numerous key gene products that could explain increased vulnerability, including SOD1 (superoxide dismutase 1), catalase, glutathione S-transferase, uncoupling protein-1, or transcription factor liver X receptor-alpha. Also, PPARgamma agonist-based neuroprotective effect was lost in neurons from N-PPARgamma neurons. Therefore, we conclude that PPARgamma in neurons play an essential protective function and that PPARgamma agonists may have utility in neuronal self-defense, in addition to their well established anti-inflammatory effect.
过氧化物酶体增殖物激活受体γ(PPARγ)在调节几乎所有脑细胞类型(包括神经元)的众多生物过程中发挥作用。我们和其他研究人员最近报道,激活PPARγ的药物在包括缺血在内的不同脑疾病模型中可有效减轻脑损伤。然而,负责PPARγ介导保护作用的细胞类型尚未明确。对缺血的反应中,PPARγ基因在神经元中强烈上调,这表明神经元PPARγ可能是PPARγ激动剂介导的神经保护的主要靶点。为了解神经元PPARγ对缺血性损伤的作用,我们构建了条件性神经元特异性PPARγ基因敲除小鼠(N-PPARγ-KO)。这些小鼠能够存活,其总体行为和脑解剖结构看似正常。然而,神经元PPARγ缺乏导致这些小鼠在大脑中动脉闭塞后经历更严重的脑损伤和氧化应激。从N-PPARγ-KO小鼠分离的原代皮质神经元(而非星形胶质细胞)在体外暴露于缺血时显示出更多损伤,并且许多关键基因产物的表达降低,这些产物可以解释其易损性增加,包括超氧化物歧化酶1(SOD1)、过氧化氢酶、谷胱甘肽S-转移酶、解偶联蛋白-1或转录因子肝X受体α。此外,基于PPARγ激动剂的神经保护作用在N-PPARγ神经元的神经元中丧失。因此,我们得出结论,神经元中的PPARγ发挥着重要的保护功能,并且PPARγ激动剂除了具有已确立的抗炎作用外,在神经元自我防御中可能也有用处。