Suppr超能文献

虚拟筛选中的机器学习

Machine learning in virtual screening.

作者信息

Melville James L, Burke Edmund K, Hirst Jonathan D

机构信息

School of Chemistry, University of Nottingham, University Park, Nottingham, UK.

出版信息

Comb Chem High Throughput Screen. 2009 May;12(4):332-43. doi: 10.2174/138620709788167980.

Abstract

In this review, we highlight recent applications of machine learning to virtual screening, focusing on the use of supervised techniques to train statistical learning algorithms to prioritize databases of molecules as active against a particular protein target. Both ligand-based similarity searching and structure-based docking have benefited from machine learning algorithms, including naïve Bayesian classifiers, support vector machines, neural networks, and decision trees, as well as more traditional regression techniques. Effective application of these methodologies requires an appreciation of data preparation, validation, optimization, and search methodologies, and we also survey developments in these areas.

摘要

在本综述中,我们重点介绍机器学习在虚拟筛选中的最新应用,着重关注使用监督技术来训练统计学习算法,以便对作为针对特定蛋白质靶点具有活性的分子数据库进行优先级排序。基于配体的相似性搜索和基于结构的对接都受益于机器学习算法,包括朴素贝叶斯分类器、支持向量机、神经网络和决策树,以及更传统的回归技术。有效应用这些方法需要了解数据准备、验证、优化和搜索方法,我们还将审视这些领域的发展情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验