Suppr超能文献

基于配体的虚拟筛选中机器学习方法的性能

Performance of machine learning methods for ligand-based virtual screening.

作者信息

Plewczynski Dariusz, Spieser Stéphane A H, Koch Uwe

机构信息

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a Street, Warsaw, Poland.

出版信息

Comb Chem High Throughput Screen. 2009 May;12(4):358-68. doi: 10.2174/138620709788167962.

Abstract

Computational screening of compound databases has become increasingly popular in pharmaceutical research. This review focuses on the evaluation of ligand-based virtual screening using active compounds as templates in the context of drug discovery. Ligand-based screening techniques are based on comparative molecular similarity analysis of compounds with known and unknown activity. We provide an overview of publications that have evaluated different machine learning methods, such as support vector machines, decision trees, ensemble methods such as boosting, bagging and random forests, clustering methods, neuronal networks, naïve Bayesian, data fusion methods and others.

摘要

在药物研究中,对化合物数据库进行计算筛选已变得越来越普遍。本综述聚焦于在药物发现背景下,以活性化合物为模板对基于配体的虚拟筛选进行评估。基于配体的筛选技术是基于对具有已知和未知活性的化合物进行比较分子相似性分析。我们概述了评估不同机器学习方法的相关出版物,这些方法包括支持向量机、决策树、诸如提升、装袋和随机森林等集成方法、聚类方法、神经网络、朴素贝叶斯、数据融合方法等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验