Suppr超能文献

TargIDe:一种针对具有抗铜绿假单胞菌生物膜活性的分子的靶标识别的机器学习工作流程。

TargIDe: a machine-learning workflow for target identification of molecules with antibiofilm activity against Pseudomonas aeruginosa.

机构信息

Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto, 4450-208, Portugal.

Faculty of Medicine, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4200-319, Porto, Portugal.

出版信息

J Comput Aided Mol Des. 2023 Jun;37(5-6):265-278. doi: 10.1007/s10822-023-00505-5. Epub 2023 Apr 22.

Abstract

Bacterial biofilms are a source of infectious human diseases and are heavily linked to antibiotic resistance. Pseudomonas aeruginosa is a multidrug-resistant bacterium widely present and implicated in several hospital-acquired infections. Over the last years, the development of new drugs able to inhibit Pseudomonas aeruginosa by interfering with its ability to form biofilms has become a promising strategy in drug discovery. Identifying molecules able to interfere with biofilm formation is difficult, but further developing these molecules by rationally improving their activity is particularly challenging, as it requires knowledge of the specific protein target that is inhibited. This work describes the development of a machine learning multitechnique consensus workflow to predict the protein targets of molecules with confirmed inhibitory activity against biofilm formation by Pseudomonas aeruginosa. It uses a specialized database containing all the known targets implicated in biofilm formation by Pseudomonas aeruginosa. The experimentally confirmed inhibitors available on ChEMBL, together with chemical descriptors, were used as the input features for a combination of nine different classification models, yielding a consensus method to predict the most likely target of a ligand. The implemented algorithm is freely available at https://github.com/BioSIM-Research-Group/TargIDe under licence GNU General Public Licence (GPL) version 3 and can easily be improved as more data become available.

摘要

细菌生物膜是人类感染性疾病的源头,与抗生素耐药性密切相关。铜绿假单胞菌是一种广泛存在的多药耐药菌,与多种医院获得性感染有关。近年来,开发能够通过干扰其生物膜形成能力来抑制铜绿假单胞菌的新药已成为药物发现的一种有前途的策略。确定能够干扰生物膜形成的分子是困难的,但通过合理提高其活性进一步开发这些分子尤其具有挑战性,因为这需要了解被抑制的特定蛋白质靶标。这项工作描述了一种机器学习多技术共识工作流程的开发,用于预测对铜绿假单胞菌生物膜形成具有确认抑制活性的分子的蛋白质靶标。它使用了一个包含所有已知的与铜绿假单胞菌生物膜形成有关的靶标的专门数据库。将 ChEMBL 上现有的实验确认抑制剂与化学描述符一起用作 9 种不同分类模型的组合的输入特征,得出一种预测配体最可能的靶标的共识方法。该实现的算法可在 https://github.com/BioSIM-Research-Group/TargIDe 上免费获得,许可证为 GNU 通用公共许可证(GPL)第 3 版,并且可以随着更多数据的可用而轻松改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df7d/10232598/be20b2c7b9c6/10822_2023_505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验