Suppr超能文献

癌症中与患者生存相关的转录因子的系统鉴定。

Systematic identification of transcription factors associated with patient survival in cancers.

作者信息

Cheng Chao, Li Lei M, Alves Pedro, Gerstein Mark

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.

出版信息

BMC Genomics. 2009 May 15;10:225. doi: 10.1186/1471-2164-10-225.

Abstract

BACKGROUND

Aberrant activation or expression of transcription factors has been implicated in the tumorigenesis of various types of cancer. In spite of the prevalent application of microarray experiments for profiling gene expression in cancer samples, they provide limited information regarding the activities of transcription factors. However, the association between transcription factors and cancers is largely dependent on the transcription regulatory activities rather than mRNA expression levels.

RESULTS

In this paper, we propose a computational approach that integrates microarray expression data with the transcription factor binding site information to systematically identify transcription factors associated with patient survival given a specific cancer type. This approach was applied to two gene expression data sets for breast cancer and acute myeloid leukemia. We found that two transcription factor families, the steroid nuclear receptor family and the ATF/CREB family, are significantly correlated with the survival of patients with breast cancer; and that a transcription factor named T-cell acute lymphocytic leukemia 1 is significantly correlated with acute myeloid leukemia patient survival.

CONCLUSION

Our analysis identifies transcription factors associating with patient survival and provides insight into the regulatory mechanism underlying the breast cancer and leukemia. The transcription factors identified by our method are biologically meaningful and consistent with prior knowledge. As an insightful tool, this approach can also be applied to other microarray cancer data sets to help researchers better understand the intricate relationship between transcription factors and diseases.

摘要

背景

转录因子的异常激活或表达与多种癌症的肿瘤发生有关。尽管微阵列实验在分析癌症样本中的基因表达方面得到了广泛应用,但它们提供的关于转录因子活性的信息有限。然而,转录因子与癌症之间的关联很大程度上取决于转录调控活性而非mRNA表达水平。

结果

在本文中,我们提出了一种计算方法,该方法将微阵列表达数据与转录因子结合位点信息相结合,以系统地识别给定特定癌症类型下与患者生存相关的转录因子。该方法应用于乳腺癌和急性髓系白血病的两个基因表达数据集。我们发现,类固醇核受体家族和ATF/CREB家族这两个转录因子家族与乳腺癌患者的生存显著相关;并且一个名为T细胞急性淋巴细胞白血病1的转录因子与急性髓系白血病患者的生存显著相关。

结论

我们的分析确定了与患者生存相关的转录因子,并深入了解了乳腺癌和白血病的潜在调控机制。我们方法识别出的转录因子具有生物学意义且与先验知识一致。作为一种有洞察力的工具,该方法也可应用于其他微阵列癌症数据集,以帮助研究人员更好地理解转录因子与疾病之间的复杂关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca8/2686740/74a18d309c62/1471-2164-10-225-1.jpg

相似文献

1
Systematic identification of transcription factors associated with patient survival in cancers.
BMC Genomics. 2009 May 15;10:225. doi: 10.1186/1471-2164-10-225.
2
Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease.
PLoS One. 2012;7(12):e52319. doi: 10.1371/journal.pone.0052319. Epub 2012 Dec 28.
3
Multi-class cancer classification via partial least squares with gene expression profiles.
Bioinformatics. 2002 Sep;18(9):1216-26. doi: 10.1093/bioinformatics/18.9.1216.
4
Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia.
Blood. 2006 Aug 1;108(3):986-92. doi: 10.1182/blood-2005-08-3482. Epub 2006 Apr 18.
8
Repressed BMP signaling reactivates NKL homeobox gene MSX1 in a T-ALL subset.
Leuk Lymphoma. 2015 Feb;56(2):480-91. doi: 10.3109/10428194.2014.924119. Epub 2014 Jun 12.

引用本文的文献

1
Identification of a Transcription Factor Signature That Can Predict Breast Cancer Survival.
Comput Math Methods Med. 2021 Feb 19;2021:2649123. doi: 10.1155/2021/2649123. eCollection 2021.
2
Identification of Transcription Factor/Gene Axis in Colon Cancer Using a Methylome Approach.
Front Genet. 2020 Jul 31;11:864. doi: 10.3389/fgene.2020.00864. eCollection 2020.
3
The pan-cancer pathological regulatory landscape.
Sci Rep. 2016 Dec 21;6:39709. doi: 10.1038/srep39709.
4
Integrative Analysis Reveals Regulatory Programs in Endometriosis.
Reprod Sci. 2015 Sep;22(9):1060-72. doi: 10.1177/1933719115592709. Epub 2015 Jun 30.
6
DPRP: a database of phenotype-specific regulatory programs derived from transcription factor binding data.
Nucleic Acids Res. 2014 Jan;42(Database issue):D178-83. doi: 10.1093/nar/gkt1254. Epub 2013 Dec 2.

本文引用的文献

1
Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells.
BMC Bioinformatics. 2008 Sep 29;9:404. doi: 10.1186/1471-2105-9-404.
4
Transcriptional networks inferred from molecular signatures of breast cancer.
Am J Pathol. 2008 Feb;172(2):495-509. doi: 10.2353/ajpath.2008.061079. Epub 2008 Jan 10.
6
Elucidating the altered transcriptional programs in breast cancer using independent component analysis.
PLoS Comput Biol. 2007 Aug;3(8):e161. doi: 10.1371/journal.pcbi.0030161. Epub 2007 Jun 29.
7
ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors.
Oncogene. 2008 Feb 14;27(8):1045-54. doi: 10.1038/sj.onc.1210727. Epub 2007 Aug 13.
8
The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors.
Oncogene. 2008 Jan 10;27(3):366-77. doi: 10.1038/sj.onc.1210643. Epub 2007 Jul 16.
10
Mutant p53: an oncogenic transcription factor.
Oncogene. 2007 Apr 2;26(15):2212-9. doi: 10.1038/sj.onc.1210296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验