Suppr超能文献

气候变暖对亚北极地区种子萌发的影响。

Effects of a warmer climate on seed germination in the subarctic.

作者信息

Milbau Ann, Graae Bente Jessen, Shevtsova Anna, Nijs Ivan

机构信息

Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.

出版信息

Ann Bot. 2009 Aug;104(2):287-96. doi: 10.1093/aob/mcp117. Epub 2009 May 13.

Abstract

BACKGROUND AND AIMS

In a future warmer subarctic climate, the soil temperatures experienced by dispersed seeds are likely to increase during summer but may decrease during winter due to expected changes in snow depth, duration and quality. Because little is known about the dormancy-breaking and germination requirements of subarctic species, how warming may influence the timing and level of germination in these species was examined.

METHODS

Under controlled conditions, how colder winter and warmer summer soil temperatures influenced germination was tested in 23 subarctic species. The cold stratification and warm incubation temperatures were derived from real soil temperature measurements in subarctic tundra and the temperatures were gradually changed over time to simulate different months of the year.

KEY RESULTS

Moderate summer warming (+2.5 degrees C) substantially accelerated germination in all but four species but did not affect germination percentages. Optimum germination temperatures (20/10 degrees C) further decreased germination time and increased germination percentages in three species. Colder winter soil temperatures delayed the germination in ten species and decreased the germination percentage in four species, whereas the opposite was found in Silene acaulis. In most species, the combined effect of a reduced snow cover and summer warming resulted in earlier germination and thus a longer first growing season, which improves the chance of seedling survival. In particular the recruitment of (dwarf) shrubs (Vaccinium myrtillus, V. vitis-idaea, Betula nana), trees (Alnus incana, Betula pubescens) and grasses (Calamagrostis lapponica, C. purpurea) is likely to benefit from a warmer subarctic climate.

CONCLUSIONS

Seedling establishment is expected to improve in a future warmer subarctic climate, mainly by considerably earlier germination. The magnitudes of the responses are species-specific, which should be taken into account when modelling population growth and migration of subarctic species.

摘要

背景与目的

在未来亚北极地区气候变暖的情况下,夏季散布种子所经历的土壤温度可能会升高,但由于积雪深度、持续时间和质量的预期变化,冬季土壤温度可能会降低。由于对亚北极物种的休眠打破和萌发要求了解甚少,因此研究了气候变暖如何影响这些物种的萌发时间和水平。

方法

在可控条件下,测试了23种亚北极物种在较冷冬季和较暖夏季土壤温度下对萌发的影响。冷层积和温育温度来自亚北极苔原实际土壤温度测量数据,并随时间逐渐变化以模拟一年中的不同月份。

主要结果

适度的夏季升温(+2.5摄氏度)除4个物种外,显著加速了所有物种的萌发,但不影响萌发率。最适萌发温度(20/10摄氏度)进一步缩短了3个物种的萌发时间并提高了萌发率。较冷的冬季土壤温度使10个物种的萌发延迟,4个物种的萌发率降低,而在无毛女娄菜中则发现相反情况。在大多数物种中,积雪减少和夏季升温的综合作用导致萌发提前,从而使第一个生长季节延长,这提高了幼苗存活的机会。特别是(矮)灌木(笃斯越桔、红豆越桔、矮桦)、乔木(灰毛桤木、柔毛桦)和禾本科植物(拉普兰拂子茅、紫拂子茅)的更新可能受益于亚北极地区气候变暖。

结论

预计在未来亚北极地区气候变暖的情况下,幼苗建立情况将得到改善,主要是因为萌发大幅提前。响应程度因物种而异,在模拟亚北极物种的种群增长和迁移时应考虑这一点。

相似文献

1
Effects of a warmer climate on seed germination in the subarctic.
Ann Bot. 2009 Aug;104(2):287-96. doi: 10.1093/aob/mcp117. Epub 2009 May 13.
2
Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra.
AoB Plants. 2017 Sep 1;9(5):plx040. doi: 10.1093/aobpla/plx040. eCollection 2017 Sep.
6
Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris.
Ann Bot. 2013 Sep;112(5):801-10. doi: 10.1093/aob/mct142. Epub 2013 Jul 24.
8
Climate warming could shift the timing of seed germination in alpine plants.
Ann Bot. 2012 Jul;110(1):155-64. doi: 10.1093/aob/mcs097. Epub 2012 May 17.
9
Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
Glob Chang Biol. 2015 Jun;21(6):2410-23. doi: 10.1111/gcb.12913. Epub 2015 Mar 18.
10
Climate warming could increase recruitment success in glacier foreland plants.
Ann Bot. 2015 Nov;116(6):907-16. doi: 10.1093/aob/mcv101. Epub 2015 Jul 1.

引用本文的文献

1
Thermotolerance screening of genotypes using seed germination assay.
Heliyon. 2024 Dec 10;10(24):e41113. doi: 10.1016/j.heliyon.2024.e41113. eCollection 2024 Dec 30.
2
Are sub-alpine species' seedling emergence and establishment in the alpine limited by climate or biotic interactions?
Ecol Evol. 2024 Feb 13;14(2):e11009. doi: 10.1002/ece3.11009. eCollection 2024 Feb.
4
Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds.
ACS Agric Sci Technol. 2023 Sep 6;3(9):760-770. doi: 10.1021/acsagscitech.3c00121. eCollection 2023 Sep 18.
5
Unraveling the Effects of Cold Stratification and Temperature on the Seed Germination of Invasive Across Latitude.
Front Plant Sci. 2022 Jun 29;13:911804. doi: 10.3389/fpls.2022.911804. eCollection 2022.
8
Climate-Driven Plant Response and Resilience on the Tibetan Plateau in Space and Time: A Review.
Plants (Basel). 2021 Mar 4;10(3):480. doi: 10.3390/plants10030480.
10
Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic.
Ecol Evol. 2019 Jan 28;9(4):1880-1897. doi: 10.1002/ece3.4882. eCollection 2019 Feb.

本文引用的文献

5
Rapid shifts in plant distribution with recent climate change.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11823-6. doi: 10.1073/pnas.0802891105. Epub 2008 Aug 12.
6
Climate change and the migration capacity of species.
Trends Ecol Evol. 2006 Mar;21(3):111-3. doi: 10.1016/j.tree.2005.11.022. Epub 2005 Dec 19.
7
Plant community responses to experimental warming across the tundra biome.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1342-6. doi: 10.1073/pnas.0503198103. Epub 2006 Jan 20.
8
Climate change. Increasing shrub abundance in the Arctic.
Nature. 2001 May 31;411(6837):546-7. doi: 10.1038/35079180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验