Suppr超能文献

自动化高维流式细胞术数据分析。

Automated high-dimensional flow cytometric data analysis.

作者信息

Pyne Saumyadipta, Hu Xinli, Wang Kui, Rossin Elizabeth, Lin Tsung-I, Maier Lisa M, Baecher-Allan Clare, McLachlan Geoffrey J, Tamayo Pablo, Hafler David A, De Jager Philip L, Mesirov Jill P

机构信息

Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge MA 02142, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24. doi: 10.1073/pnas.0903028106. Epub 2009 May 14.

Abstract

Flow cytometric analysis allows rapid single cell interrogation of surface and intracellular determinants by measuring fluorescence intensity of fluorophore-conjugated reagents. The availability of new platforms, allowing detection of increasing numbers of cell surface markers, has challenged the traditional technique of identifying cell populations by manual gating and resulted in a growing need for the development of automated, high-dimensional analytical methods. We present a direct multivariate finite mixture modeling approach, using skew and heavy-tailed distributions, to address the complexities of flow cytometric analysis and to deal with high-dimensional cytometric data without the need for projection or transformation. We demonstrate its ability to detect rare populations, to model robustly in the presence of outliers and skew, and to perform the critical task of matching cell populations across samples that enables downstream analysis. This advance will facilitate the application of flow cytometry to new, complex biological and clinical problems.

摘要

流式细胞术分析通过测量荧光团偶联试剂的荧光强度,能够对细胞表面和细胞内的决定因素进行快速单细胞检测。新平台的出现使得能够检测越来越多的细胞表面标志物,这对通过手动设门识别细胞群体的传统技术提出了挑战,导致对开发自动化、高维分析方法的需求不断增加。我们提出了一种直接的多变量有限混合建模方法,使用偏态和重尾分布,以解决流式细胞术分析的复杂性,并处理高维细胞测量数据,而无需进行投影或转换。我们展示了它检测稀有群体的能力、在存在异常值和偏态的情况下进行稳健建模的能力,以及执行跨样本匹配细胞群体这一关键任务的能力,从而实现下游分析。这一进展将促进流式细胞术在新的、复杂的生物学和临床问题中的应用。

相似文献

1
Automated high-dimensional flow cytometric data analysis.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24. doi: 10.1073/pnas.0903028106. Epub 2009 May 14.
2
Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions.
Biostatistics. 2010 Apr;11(2):317-36. doi: 10.1093/biostatistics/kxp062. Epub 2010 Jan 27.
4
Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure.
Cytometry A. 2016 Jan;89(1):30-43. doi: 10.1002/cyto.a.22789. Epub 2015 Oct 22.
5
Telomere length measurement by fluorescence in situ hybridization and flow cytometry.
Methods Mol Biol. 2004;263:385-98. doi: 10.1385/1-59259-773-4:385.
6
Automated flow cytometric analysis across large numbers of samples and cell types.
Clin Immunol. 2015 Apr;157(2):249-60. doi: 10.1016/j.clim.2014.12.009. Epub 2015 Jan 7.
7
RchyOptimyx: cellular hierarchy optimization for flow cytometry.
Cytometry A. 2012 Dec;81(12):1022-30. doi: 10.1002/cyto.a.22209. Epub 2012 Oct 8.
8
Statistical mixture modeling for cell subtype identification in flow cytometry.
Cytometry A. 2008 Aug;73(8):693-701. doi: 10.1002/cyto.a.20583.

引用本文的文献

1
cytoKernel: robust kernel embeddings for assessing differential expression of single-cell data.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf399.
3
Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice?
Int J Mol Sci. 2024 Dec 13;25(24):13371. doi: 10.3390/ijms252413371.
5
cytoKernel: Robust kernel embeddings for assessing differential expression of single cell data.
bioRxiv. 2024 Aug 19:2024.08.16.608287. doi: 10.1101/2024.08.16.608287.
6
GateMeClass: Gate Mining and Classification of cytometry data.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae322.
8
A cell-level discriminative neural network model for diagnosis of blood cancers.
Bioinformatics. 2023 Oct 3;39(10). doi: 10.1093/bioinformatics/btad585.
9
Statistical and machine learning methods for immunoprofiling based on single-cell data.
Hum Vaccin Immunother. 2023 Aug 1;19(2):2234792. doi: 10.1080/21645515.2023.2234792. Epub 2023 Jul 24.
10

本文引用的文献

1
Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines.
PLoS Genet. 2008 Nov;4(11):e1000287. doi: 10.1371/journal.pgen.1000287. Epub 2008 Nov 28.
2
Statistical mixture modeling for cell subtype identification in flow cytometry.
Cytometry A. 2008 Aug;73(8):693-701. doi: 10.1002/cyto.a.20583.
3
Mixture modeling approach to flow cytometry data.
Cytometry A. 2008 May;73(5):421-9. doi: 10.1002/cyto.a.20553.
4
Automated gating of flow cytometry data via robust model-based clustering.
Cytometry A. 2008 Apr;73(4):321-32. doi: 10.1002/cyto.a.20531.
5
Allelic variant in CTLA4 alters T cell phosphorylation patterns.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18607-12. doi: 10.1073/pnas.0706409104. Epub 2007 Nov 13.
6
PLINK: a tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet. 2007 Sep;81(3):559-75. doi: 10.1086/519795. Epub 2007 Jul 25.
7
Mixture-model classification in DNA content analysis.
Cytometry A. 2007 Sep;71(9):716-23. doi: 10.1002/cyto.a.20443.
8
Quality assurance for polychromatic flow cytometry.
Nat Protoc. 2006;1(3):1522-30. doi: 10.1038/nprot.2006.250.
9
Data quality assessment of ungated flow cytometry data in high throughput experiments.
Cytometry A. 2007 Jun;71(6):393-403. doi: 10.1002/cyto.a.20396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验