Suppr超能文献

RchyOptimyx:流式细胞术的细胞层次优化。

RchyOptimyx: cellular hierarchy optimization for flow cytometry.

机构信息

Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.

出版信息

Cytometry A. 2012 Dec;81(12):1022-30. doi: 10.1002/cyto.a.22209. Epub 2012 Oct 8.

Abstract

Analysis of high-dimensional flow cytometry datasets can reveal novel cell populations with poorly understood biology. Following discovery, characterization of these populations in terms of the critical markers involved is an important step, as this can help to both better understand the biology of these populations and aid in designing simpler marker panels to identify them on simpler instruments and with fewer reagents (i.e., in resource poor or highly regulated clinical settings). However, current tools to design panels based on the biological characteristics of the target cell populations work exclusively based on technical parameters (e.g., instrument configurations, spectral overlap, and reagent availability). To address this shortcoming, we developed RchyOptimyx (cellular hieraRCHY OPTIMization), a computational tool that constructs cellular hierarchies by combining automated gating with dynamic programming and graph theory to provide the best gating strategies to identify a target population to a desired level of purity or correlation with a clinical outcome, using the simplest possible marker panels. RchyOptimyx can assess and graphically present the trade-offs between marker choice and population specificity in high-dimensional flow or mass cytometry datasets. We present three proof-of-concept use cases for RchyOptimyx that involve 1) designing a panel of surface markers for identification of rare populations that are primarily characterized using their intracellular signature; 2) simplifying the gating strategy for identification of a target cell population; 3) identification of a non-redundant marker set to identify a target cell population.

摘要

分析高维流式细胞术数据集可以揭示具有未知生物学特性的新型细胞群体。在发现这些群体之后,对其涉及的关键标志物进行特征描述是一个重要的步骤,因为这有助于更好地理解这些群体的生物学特性,并有助于设计更简单的标记面板,以便在更简单的仪器上使用更少的试剂(即在资源匮乏或高度监管的临床环境中)来识别它们。然而,目前基于目标细胞群体生物学特征来设计面板的工具仅基于技术参数(例如,仪器配置、光谱重叠和试剂可用性)。为了解决这一缺点,我们开发了 RchyOptimyx(细胞层次结构优化),这是一种计算工具,通过将自动门控与动态规划和图论相结合,构建细胞层次结构,提供最佳的门控策略,以达到所需的纯度或与临床结果的相关性来识别目标群体,同时使用最简单的可能的标记面板。RchyOptimyx 可以评估和图形化呈现高维流式或质谱细胞术数据集中标记选择和群体特异性之间的权衡。我们提出了 RchyOptimyx 的三个概念验证用例,涉及 1)设计用于识别主要通过细胞内特征来表征的稀有群体的表面标记面板;2)简化用于识别目标细胞群体的门控策略;3)识别用于识别目标细胞群体的非冗余标记集。

相似文献

1
RchyOptimyx: cellular hierarchy optimization for flow cytometry.RchyOptimyx:流式细胞术的细胞层次优化。
Cytometry A. 2012 Dec;81(12):1022-30. doi: 10.1002/cyto.a.22209. Epub 2012 Oct 8.
5
Computational analysis optimizes the flow cytometric evaluation for lymphoma.计算分析优化淋巴瘤流式细胞术评估。
Cytometry B Clin Cytom. 2014 Jan;86(1):18-24. doi: 10.1002/cyto.b.21115. Epub 2013 Sep 3.

引用本文的文献

2
Flow Cytometry: The Next Revolution.流式细胞术:下一次革命。
Cells. 2023 Jul 17;12(14):1875. doi: 10.3390/cells12141875.
4
High-Dimensional Immune Monitoring for Chimeric Antigen Receptor T Cell Therapies.高维免疫监测用于嵌合抗原受体 T 细胞疗法。
Curr Hematol Malig Rep. 2021 Feb;16(1):112-116. doi: 10.1007/s11899-020-00602-4. Epub 2021 Jan 15.
9
Data-Driven Flow Cytometry Analysis.数据驱动的流式细胞术分析
Methods Mol Biol. 2019;1989:245-265. doi: 10.1007/978-1-4939-9454-0_16.

本文引用的文献

3
A deep profiler's guide to cytometry.细胞仪深入剖析指南
Trends Immunol. 2012 Jul;33(7):323-32. doi: 10.1016/j.it.2012.02.010. Epub 2012 Apr 2.
4
7
OMIP-007: phenotypic analysis of human natural killer cells.OMIP - 007:人类自然杀伤细胞的表型分析
Cytometry A. 2012 Jun;81(6):447-9. doi: 10.1002/cyto.a.22033. Epub 2012 Mar 12.
8
Cytometry: today's technology and tomorrow's horizons.流式细胞术:今日的技术与明日的前景。
Methods. 2012 Jul;57(3):251-8. doi: 10.1016/j.ymeth.2012.02.009. Epub 2012 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验