Suppr超能文献

基于局部学习字典的聚类去噪

Clustering-based denoising with locally learned dictionaries.

作者信息

Chatterjee Priyam, Milanfar Peyman

机构信息

Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA.

出版信息

IEEE Trans Image Process. 2009 Jul;18(7):1438-51. doi: 10.1109/TIP.2009.2018575. Epub 2009 May 12.

Abstract

In this paper, we propose K-LLD: a patch-based, locally adaptive denoising method based on clustering the given noisy image into regions of similar geometric structure. In order to effectively perform such clustering, we employ as features the local weight functions derived from our earlier work on steering kernel regression . These weights are exceedingly informative and robust in conveying reliable local structural information about the image even in the presence of significant amounts of noise. Next, we model each region (or cluster)-which may not be spatially contiguous-by "learning" a best basis describing the patches within that cluster using principal components analysis. This learned basis (or "dictionary") is then employed to optimally estimate the underlying pixel values using a kernel regression framework. An iterated version of the proposed algorithm is also presented which leads to further performance enhancements. We also introduce a novel mechanism for optimally choosing the local patch size for each cluster using Stein's unbiased risk estimator (SURE). We illustrate the overall algorithm's capabilities with several examples. These indicate that the proposed method appears to be competitive with some of the most recently published state of the art denoising methods.

摘要

在本文中,我们提出了K - LLD:一种基于块的局部自适应去噪方法,该方法通过将给定的噪声图像聚类为具有相似几何结构的区域来实现。为了有效地执行这种聚类,我们采用从我们早期关于导向核回归的工作中导出的局部权重函数作为特征。即使在存在大量噪声的情况下,这些权重在传达关于图像的可靠局部结构信息方面也极具信息性和鲁棒性。接下来,我们通过使用主成分分析“学习”描述该聚类内块的最佳基,对每个区域(或聚类)进行建模,这些区域可能在空间上不相邻。然后使用核回归框架,将这个学习到的基(或“字典”)用于最优估计潜在的像素值。我们还提出了该算法的迭代版本,这会带来进一步的性能提升。我们还引入了一种新颖的机制,使用斯坦无偏风险估计器(SURE)为每个聚类最优地选择局部块大小。我们用几个例子说明了整体算法的能力。这些例子表明,所提出的方法似乎与一些最近发表的最先进的去噪方法具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验