Suppr超能文献

使用无参考图像内容度量的去噪算法自动参数选择。

Automatic parameter selection for denoising algorithms using a no-reference measure of image content.

机构信息

Department of Electrical Engineering, University of California, Santa Cruz, 95064, USA.

出版信息

IEEE Trans Image Process. 2010 Dec;19(12):3116-32. doi: 10.1109/TIP.2010.2052820. Epub 2010 Jun 14.

Abstract

Across the field of inverse problems in image and video processing, nearly all algorithms have various parameters which need to be set in order to yield good results. In practice, usually the choice of such parameters is made empirically with trial and error if no "ground-truth" reference is available. Some analytical methods such as cross-validation and Stein's unbiased risk estimate (SURE) have been successfully used to set such parameters. However, these methods tend to be strongly reliant on restrictive assumptions on the noise, and also computationally heavy. In this paper, we propose a no-reference metric Q which is based upon singular value decomposition of local image gradient matrix, and provides a quantitative measure of true image content (i.e., sharpness and contrast as manifested in visually salient geometric features such as edges,) in the presence of noise and other disturbances. This measure 1) is easy to compute, 2) reacts reasonably to both blur and random noise, and 3) works well even when the noise is not Gaussian. The proposed measure is used to automatically and effectively set the parameters of two leading image denoising algorithms. Ample simulated and real data experiments support our claims. Furthermore, tests using the TID2008 database show that this measure correlates well with subjective quality evaluations for both blur and noise distortions.

摘要

在图像和视频处理的反问题领域中,几乎所有的算法都有各种需要设置的参数,以产生良好的结果。在实践中,如果没有“真实”的参考,通常会通过尝试和错误来凭经验选择这些参数。一些分析方法,如交叉验证和 Stein 的无偏风险估计(SURE),已经成功地用于设置这些参数。然而,这些方法往往强烈依赖于对噪声的限制性假设,并且计算量也很大。在本文中,我们提出了一种无参考度量 Q,它基于局部图像梯度矩阵的奇异值分解,并提供了一种在噪声和其他干扰存在的情况下对真实图像内容(即视觉上明显的几何特征如边缘的锐度和对比度)的定量度量。该度量方法 1)易于计算,2)对模糊和随机噪声的反应合理,3)即使噪声不是高斯分布也能很好地工作。所提出的度量方法被用于自动有效地设置两种领先的图像去噪算法的参数。大量的模拟和真实数据实验支持了我们的观点。此外,使用 TID2008 数据库进行的测试表明,该度量与模糊和噪声失真的主观质量评估有很好的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验