Suppr超能文献

基于降维和 SURE 的非局部均值方法。

Nonlocal means with dimensionality reduction and SURE-based parameter selection.

出版信息

IEEE Trans Image Process. 2011 Sep;20(9):2683-90. doi: 10.1109/TIP.2011.2121083. Epub 2011 Mar 7.

Abstract

Nonlocal means (NLM) is an effective denoising method that applies adaptive averaging based on similarity between neighborhoods in the image. An attractive way to both improve and speed-up NLM is by first performing a linear projection of the neighborhood. One particular example is to use principal components analysis (PCA) to perform dimensionality reduction. Here, we derive Stein's unbiased risk estimate (SURE) for NLM with linear projection of the neighborhoods. The SURE can then be used to optimize the parameters by a search algorithm or we can consider a linear expansion of multiple NLMs, each with a fixed parameter set, for which the optimal weights can be found by solving a linear system of equations. The experimental results demonstrate the accuracy of the SURE and its successful application to tune the parameters for NLM.

摘要

非局部均值(NLM)是一种有效的去噪方法,它基于图像中邻域之间的相似性进行自适应平均。改进和加速 NLM 的一种有吸引力的方法是首先对邻域进行线性投影。一个特别的例子是使用主成分分析(PCA)进行降维。在这里,我们为具有邻域线性投影的 NLM 推导出 Stein 的无偏风险估计(SURE)。然后,可以通过搜索算法使用 SURE 来优化参数,或者我们可以考虑对多个 NLM 进行线性扩展,每个 NLM 都有固定的参数集,通过求解线性方程组可以找到最优权重。实验结果证明了 SURE 的准确性及其成功应用于调整 NLM 的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验