Suppr超能文献

初级H⁺ V-ATP酶与次级Na⁺ 或K⁺ 依赖性转运蛋白的电压偶联。

Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.

作者信息

Harvey William R

机构信息

Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.

出版信息

J Exp Biol. 2009 Jun;212(Pt 11):1620-9. doi: 10.1242/jeb.031534.

Abstract

This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+) F-ATP synthases, has two parts, the electrical potential difference across the phosphorylating membrane, Deltapsi, and the pH difference between the bulk solutions on either side of the membrane, DeltapH. The DeltapH term implies three phases - a bulk fluid phase on the H(+) input side, the membrane phase and a bulk fluid phase on the H(+) output side. The Mitchell theory was applied to H(+) V-ATPases largely by analogy with H(+) F-ATP synthases operating in reverse as H(+) F-ATPases. We suggest an alternative, voltage coupling model. Our model for V-ATPases is based on Douglas B. Kell's 1979 'electrodic view' of ATP synthases in which two phases are added to the Mitchell model - an unstirred layer on the input side and another one on the output side of the membrane. In addition, we replace the notion that H(+) V-ATPases normally acidify the output bulk solution with the hypothesis, which we introduced in 1992, that the primary action of a H(+) V-ATPase is to charge the membrane capacitance and impose a Deltapsi across the membrane; the translocated hydrogen ions (H(+)s) are retained at the outer fluid-membrane interface by electrostatic attraction to the anions that were left behind. All subsequent events, including establishing pH differences in the outside bulk solution, are secondary. Using the surface of an electrode as a model, Kell's 'electrodic view' has five phases - the outer bulk fluid phase, an outer fluid-membrane interface, the membrane phase, an inner fluid-membrane interface and the inner bulk fluid phase. Light flash, H(+) releasing and binding experiments and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed.

摘要

本综述为关于H(+) V-ATP酶介导膜能量化的两个成熟理论提供了替代观点。首先,我们对H(+) V-ATP酶在其插入的膜上建立质子动力势(pmf)这一观点提出了替代看法。质子动力势这一术语由彼得·米切尔于1961年在其关于H(+) F-ATP合酶合成ATP的化学渗透假说中提出,它有两个部分,即磷酸化膜两侧的电势差Δψ,以及膜两侧本体溶液之间的pH差值ΔpH。ΔpH项意味着三个阶段——H(+)输入侧的本体流体相、膜相以及H(+)输出侧的本体流体相。米切尔理论在很大程度上是通过与作为H(+) F-ATP酶逆向运行的H(+) F-ATP合酶进行类比而应用于H(+) V-ATP酶的。我们提出了一种替代的电压偶联模型。我们的V-ATP酶模型基于道格拉斯·B·凯尔1979年对ATP合酶的“电极观点”,其中在米切尔模型中增加了两个相——膜输入侧的一个不搅拌层和膜输出侧的另一个不搅拌层。此外,我们用我们在1992年提出的假说取代了H(+) V-ATP酶通常使输出本体溶液酸化这一观点,即H(+) V-ATP酶的主要作用是对膜电容充电并在膜上施加Δψ;转运的氢离子(H(+))通过静电吸引留在膜外流体 - 膜界面处的阴离子而被保留在那里。所有后续事件,包括在外部本体溶液中建立pH差异,都是次要的。以电极表面为模型,凯尔的“电极观点”有五个相——外部本体流体相、外部流体 - 膜界面、膜相、内部流体 - 膜界面和内部本体流体相。光脉冲、H(+)释放和结合实验以及其他证据为凯尔的电极观点提供了令人信服的支持,但米切尔的化学渗透理论却是当今大多数生物能量学专家所接受的理论。首先,我们讨论H(+) V-ATP酶与形成毛虫K(+)泵的K(+)/2H(+)反向转运体之间的相互作用,并使用凯尔的电极观点来解释尽管管腔本体流体中的pH值呈强碱性,但膜外流体 - 膜界面处的H(+)如何通过反向转运体驱动两个H(+)从管腔进入细胞以及一个K(+)从细胞进入管腔。外部本体流体K(+)(或Na(+))与外部界面H(+)的交换以及(K(+)或Na(+))/2H(+)反向转运,将氢离子电化学势差μ(H)转化为K(+)电化学势差μ(K)或Na(+)电化学势差μ(Na)。μ(K)或μ(Na)驱动K(+)或Na(+)偶联的营养氨基酸转运体(NATs),例如KAAT1(K(+)氨基酸转运体1),它将Na(+)和一个氨基酸转运到细胞中,不涉及H(+)。还讨论了使用电压偶联模型来解释毛虫和幼虫蚊子中肠中离子和氨基酸转运的例子。

相似文献

1
Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
J Exp Biol. 2009 Jun;212(Pt 11):1620-9. doi: 10.1242/jeb.031534.
2
Cationic pathway of pH regulation in larvae of Anopheles gambiae.
J Exp Biol. 2008 Mar;211(Pt 6):957-68. doi: 10.1242/jeb.012021.
3
Animal plasma membrane energization by chemiosmotic H+ V-ATPases.
J Exp Biol. 1997 Jan;200(Pt 2):203-16. doi: 10.1242/jeb.200.2.203.
6
Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
Adv Microb Physiol. 2004;49:175-218. doi: 10.1016/S0065-2911(04)49004-3.
8
Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
Biochemistry (Mosc). 2020 Dec;85(12):1613-1630. doi: 10.1134/S0006297920120135.
9
The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin.
J Exp Biol. 1997 Jan;200(Pt 2):247-56. doi: 10.1242/jeb.200.2.247.

引用本文的文献

1
Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation.
Theranostics. 2023 Jan 1;13(2):736-766. doi: 10.7150/thno.79876. eCollection 2023.
5
Roles of vacuolar H-ATPase in mice treated with norepinephrine and acetylcholine.
Int J Clin Exp Pathol. 2020 Jun 1;13(6):1300-1312. eCollection 2020.
6
7
The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology.
Environ Sci Technol. 2018 May 15;52(10):6009-6022. doi: 10.1021/acs.est.8b00837. Epub 2018 Apr 24.
8
Physiological mechanism of osmoregulatory adaptation in anguillid eels.
Fish Physiol Biochem. 2018 Apr;44(2):423-433. doi: 10.1007/s10695-018-0464-6. Epub 2018 Jan 17.

本文引用的文献

2
Vacuolar-type proton pumps in insect epithelia.
J Exp Biol. 2009 Jun;212(Pt 11):1611-9. doi: 10.1242/jeb.030007.
3
NhaA crystal structure: functional-structural insights.
J Exp Biol. 2009 Jun;212(Pt 11):1593-603. doi: 10.1242/jeb.026708.
4
Cloning and functional expression of the first eukaryotic Na+-tryptophan symporter, AgNAT6.
J Exp Biol. 2009 May;212(Pt 10):1559-67. doi: 10.1242/jeb.027383.
5
NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F730-50. doi: 10.1152/ajprenal.90564.2008. Epub 2009 Feb 4.
9
Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa.
J Cell Sci. 2008 Aug 1;121(Pt 15):2612-9. doi: 10.1242/jcs.033084. Epub 2008 Jul 15.
10
Cationic pathway of pH regulation in larvae of Anopheles gambiae.
J Exp Biol. 2008 Mar;211(Pt 6):957-68. doi: 10.1242/jeb.012021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验