Suppr超能文献

富含锚蛋白重复序列的跨膜/Kidins220蛋白在体内调节树突分支和棘稳定性。

Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo.

作者信息

Wu Synphen H, Arévalo Juan Carlos, Sarti Federica, Tessarollo Lino, Gan Wen-Biao, Chao Moses V

机构信息

Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.

出版信息

Dev Neurobiol. 2009 Aug;69(9):547-57. doi: 10.1002/dneu.20723.

Abstract

The development of nervous system connectivity depends upon the arborization of dendritic fields and the stabilization of dendritic spine synapses. It is well established that neuronal activity and the neurotrophin BDNF modulate these correlated processes. However, the downstream mechanisms by which these extrinsic signals regulate dendritic development and spine stabilization are less well known. Here we report that a substrate of BDNF signaling, the Ankyrin Repeat-rich Membrane Spanning (ARMS) protein or Kidins220, plays a critical role in the branching of cortical and hippocampal dendrites and in the turnover of cortical spines. In the barrel somatosensory cortex and the dentate gyrus, regions where ARMS/Kidins220 is highly expressed, no difference in the complexity of dendritic arbors was observed in 1-month-old adolescent ARMS/Kidins220(+/-) mice compared to wild-type littermates. However, at 3 months of age, young adult ARMS/Kidins220(+/-) mice exhibited decreased dendritic complexity. This suggests that ARMS/Kidins220 does not play a significant role in the initial formation of dendrites but, rather, is involved in the refinement or stabilization of the arbors later in development. In addition, at 1 month of age, the rate of spine elimination was higher in ARMS/Kidins220(+/-) mice than in wild-type mice, suggesting that ARMS/Kidins220(+/-) levels regulate spine stability. Taken together, these data suggest that ARMS/Kidins220 is important for the growth of dendritic arbors and spine stability during an activity- and BDNF-dependent period of development.

摘要

神经系统连接的发育取决于树突场的分支形成以及树突棘突触的稳定。众所周知,神经元活动和神经营养因子BDNF调节这些相关过程。然而,这些外部信号调节树突发育和棘稳定的下游机制却鲜为人知。在此我们报告,BDNF信号的一个底物,富含锚蛋白重复序列的跨膜(ARMS)蛋白或Kidins220,在皮质和海马树突的分支以及皮质棘的更新中起关键作用。在桶状体感皮层和齿状回中,ARMS/Kidins220高表达的区域,与野生型同窝小鼠相比,1月龄青春期ARMS/Kidins220(+/-)小鼠的树突分支复杂性没有差异。然而,在3月龄时,年轻成年ARMS/Kidins220(+/-)小鼠的树突复杂性降低。这表明ARMS/Kidins220在树突的初始形成中不发挥重要作用,而是在发育后期参与分支的细化或稳定。此外,在1月龄时,ARMS/Kidins220(+/-)小鼠的棘消除率高于野生型小鼠,表明ARMS/Kidins220(+/-)水平调节棘的稳定性。综上所述,这些数据表明ARMS/Kidins220在依赖活动和BDNF的发育阶段对树突分支生长和棘稳定性很重要。

相似文献

3
Kidins220/ARMS modulates the activity of microtubule-regulating proteins and controls neuronal polarity and development.
J Biol Chem. 2010 Jan 8;285(2):1343-57. doi: 10.1074/jbc.M109.024703. Epub 2009 Nov 10.
4
Ankyrin repeat-rich membrane spanning/Kidins220 protein interacts with mammalian Septin 5.
Mol Cells. 2010 Aug;30(2):143-8. doi: 10.1007/s10059-010-0099-7. Epub 2010 Jul 23.
8
Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation.
Mol Biol Cell. 2007 Jan;18(1):142-52. doi: 10.1091/mbc.e06-05-0453. Epub 2006 Nov 1.
10
Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.
PLoS One. 2015 Jun 17;10(6):e0129944. doi: 10.1371/journal.pone.0129944. eCollection 2015.

引用本文的文献

2
Mechanisms Controlling the Expression and Secretion of BDNF.
Biomolecules. 2023 May 2;13(5):789. doi: 10.3390/biom13050789.
3
ARMS-NF-κB signaling regulates intracellular ROS to induce autophagy-associated cell death upon oxidative stress.
iScience. 2023 Jan 18;26(2):106005. doi: 10.1016/j.isci.2023.106005. eCollection 2023 Feb 17.
4
Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice.
Cell Death Discov. 2022 Feb 9;8(1):58. doi: 10.1038/s41420-022-00854-4.
5
Kidins220/ARMS controls astrocyte calcium signaling and neuron-astrocyte communication.
Cell Death Differ. 2020 May;27(5):1505-1519. doi: 10.1038/s41418-019-0431-5. Epub 2019 Oct 17.
6
Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels.
J Neurosci. 2018 Jun 6;38(23):5415-5428. doi: 10.1523/JNEUROSCI.1653-17.2018. Epub 2018 May 16.
7
Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS.
Front Cell Neurosci. 2016 Mar 14;10:68. doi: 10.3389/fncel.2016.00068. eCollection 2016.
8
Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk.
Schizophr Res. 2015 Oct;168(1-2):421-8. doi: 10.1016/j.schres.2015.07.002. Epub 2015 Jul 26.
9
Ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein regulates neuroblastoma cell proliferation through p21.
Mol Cells. 2014 Dec 31;37(12):881-7. doi: 10.14348/molcells.2014.0182. Epub 2014 Nov 10.
10
Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood.
Front Neuroanat. 2014 Oct 20;8:116. doi: 10.3389/fnana.2014.00116. eCollection 2014.

本文引用的文献

2
The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis.
J Physiol. 2008 Mar 15;586(6):1509-17. doi: 10.1113/jphysiol.2007.150029. Epub 2008 Jan 17.
6
Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex.
Nat Neurosci. 2007 May;10(5):549-51. doi: 10.1038/nn1883. Epub 2007 Apr 8.
7
Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation.
Mol Biol Cell. 2007 Jan;18(1):142-52. doi: 10.1091/mbc.e06-05-0453. Epub 2006 Nov 1.
8
Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior.
Science. 2006 Oct 6;314(5796):140-3. doi: 10.1126/science.1129663.
9
BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
Development. 2006 Jul;133(13):2477-86. doi: 10.1242/dev.02409. Epub 2006 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验