Song Hyun-Seob, Morgan John A, Ramkrishna Doraiswami
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Biotechnol Bioeng. 2009 Aug 1;103(5):984-1002. doi: 10.1002/bit.22332.
The hybrid cybernetic modeling approach of Kim et al. (Kim et al. [2008] Biotechnol. Prog., in press) views the substrate uptake flux in microorganisms as being distributed in a regulated way among different elementary modes (EMs) of a metabolic network, which intracellular fluxes related to the uptake rates by the pseudo-steady-state approximation on intracellular metabolites. While the conceptual development has been demonstrated by Kim et al. (Kim et al. [2008] Biotechnol. Prog., in press) using a rather simple example (i.e., Escherichia coli metabolizing a single substrate), its extension to a larger scale network involving multiple substrates results in serious overparameterization (which implies an excessive number of parameters relative to the measurements available to determine them). Through the case study of recombinant Saccharomyces yeast co-consuming glucose and xylose, we present a systematic way of formulating a minimal order hybrid cybernetic model (HCM) for a general metabolic network. The overparameterization problem mostly arising from a large number of EMs is avoided using a model reduction technique developed by Song and Ramkrishna (Song and Ramkrishna [2009a] Biotechnol. Bioeng. 102(2):554-568) where an original set of EMs is condensed to a much smaller subset. Detailed discussions follow on the issue of determining the minimal set of active modes needed for the description of the simultaneous consumption of multiple substrates. The developed HCM is compared with other metabolic models: macroscopic bioreaction models (Provost et al. [2006] Bioprocess Biosyt. Eng. 29(5-6):349-366), and dynamic flux balance analysis. It is shown that the HCM outperforms the other two as validated using various sets of fermentation data. The difference among the models is more dramatic in a situation such as the sequential utilization of glucose and xylose, which is observed under realistic fermentation conditions.
Kim等人(Kim等人,[2008]《生物技术进展》,即将发表)的混合控制论建模方法认为,微生物中的底物摄取通量以一种受调节的方式分布在代谢网络的不同基本模式(EMs)之间,通过对细胞内代谢物的准稳态近似,细胞内通量与摄取速率相关。虽然Kim等人(Kim等人,[2008]《生物技术进展》,即将发表)使用一个相当简单的例子(即大肠杆菌代谢单一底物)证明了概念的发展,但其扩展到涉及多种底物的更大规模网络会导致严重的过度参数化(这意味着相对于可用于确定参数的测量值,参数数量过多)。通过对共消耗葡萄糖和木糖的重组酿酒酵母的案例研究,我们提出了一种为一般代谢网络构建最小阶混合控制论模型(HCM)的系统方法。使用Song和Ramkrishna开发的模型简化技术(Song和Ramkrishna,[2009a]《生物技术与生物工程》102(2):554 - 568)避免了主要由大量EMs引起的过度参数化问题,其中原始的EMs集合被浓缩为一个小得多的子集。随后详细讨论了确定描述多种底物同时消耗所需的最小活性模式集的问题。将开发的HCM与其他代谢模型进行了比较:宏观生物反应模型(Provost等人,[2006]《生物过程生物系统工程》29(5 - 6):349 - 366)和动态通量平衡分析。结果表明,使用各种发酵数据集进行验证时,HCM的性能优于其他两个模型。在实际发酵条件下观察到的葡萄糖和木糖顺序利用等情况下,模型之间的差异更为显著。