Suppr超能文献

基于集总基本模式的控制论模型能够准确预测应变特异性代谢功能。

Cybernetic models based on lumped elementary modes accurately predict strain-specific metabolic function.

机构信息

School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA.

出版信息

Biotechnol Bioeng. 2011 Jan;108(1):127-40. doi: 10.1002/bit.22922.

Abstract

In a recent article, Song and Ramkrishna (Song and Ramkrishna [2010]. Biotechnol Bioeng 106(2):271-284) proposed a lumped hybrid cybernetic model (L-HCM) towards extracting maximum information about metabolic function from a minimum of data. This approach views the total uptake flux as distributed among lumped elementary modes (L-EMs) so as to maximize a prescribed metabolic objective such as growth or uptake rate. L-EM is computed as a weighted average of EMs where the weights are related to the yields of vital products (i.e., biomass and ATP). In this article, we further enhance the predictive power of L-HCMs through modifications in lumping weights with additional parameters that can be tuned with data viewed to be critical. The resulting model is able to make predictions of diverse metabolic behaviors varying greatly with strain types as evidenced from case studies of anaerobic growth of various Escherichia coli strains. Incorporation of the new lumping formula into L-HCM remarkably improves model predictions with a few critical data, thus presenting L-HCM as a dynamic tool as being not only qualitatively correct but also quantitatively accurate.

摘要

在最近的一篇文章中,Song 和 Ramkrishna(Song 和 Ramkrishna [2010]。Biotechnol Bioeng 106(2):271-284)提出了一种集中式混合控制论模型(L-HCM),旨在从最少的数据中提取关于代谢功能的最大信息。这种方法将总摄取通量视为集中在集中式基本模式(L-EM)中,以最大化规定的代谢目标,如生长或摄取率。L-EM 是通过将权重与重要产物(即生物量和 ATP)的产率相关联的 EM 的加权平均值来计算的。在本文中,我们通过用可以与关键数据一起调整的附加参数修改集中权重,进一步增强了 L-HCM 的预测能力。该模型能够对不同的代谢行为进行预测,这些行为因菌株类型而异,这从各种大肠杆菌菌株的厌氧生长的案例研究中得到了证明。将新的集中公式纳入 L-HCM 中,可以用少量关键数据显著提高模型的预测能力,从而使 L-HCM 成为一种动态工具,不仅在定性上是正确的,而且在定量上也是准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验