Suppr超能文献

剖析数量性状核苷酸的多效性后果。

Dissecting the pleiotropic consequences of a quantitative trait nucleotide.

作者信息

Kim Hyun Seok, Huh Juyoung, Fay Justin C

机构信息

Department of Genetics, Washington University School of Medicine, 444 Forest Park Ave, St. Louis, MO 63108, USA.

出版信息

FEMS Yeast Res. 2009 Aug;9(5):713-22. doi: 10.1111/j.1567-1364.2009.00516.x. Epub 2009 Apr 23.

Abstract

The downstream consequences of a single quantitative trait polymorphism can provide important insight into the molecular basis of a trait. However, the molecular consequences of a polymorphism may be complex and only a subset of these may influence the trait of interest. In natural isolates of Saccharomyces cerevisiae, a nonsynonymous polymorphism in cystathione beta-synthase (CYS4) causes a deficiency in both cysteine and glutathione that results in rust-colored colonies and drug-dependent growth defects. Using a single-nucleotide allele replacement, we characterized the effects of this polymorphism on gene expression levels across the genome. To determine whether any of the differentially expressed genes are necessary for the production of rust-colored colonies, we screened the yeast deletion collection for genes that enhance or suppress rust coloration. We found that genes in the sulfur assimilation pathway are required for the production of rust color but not the drug-sensitivity phenotype. Our results show that a single quantitative trait polymorphism can generate a complex set of downstream changes, providing a molecular basis for pleiotropy.

摘要

单个数量性状多态性的下游效应能够为某一性状的分子基础提供重要见解。然而,多态性的分子效应可能很复杂,其中只有一部分可能会影响感兴趣的性状。在酿酒酵母的自然分离株中,胱硫醚β-合酶(CYS4)中的一个非同义多态性会导致半胱氨酸和谷胱甘肽缺乏,从而产生铁锈色菌落和药物依赖性生长缺陷。我们使用单核苷酸等位基因替换技术,表征了这种多态性对全基因组基因表达水平的影响。为了确定任何差异表达基因是否是产生铁锈色菌落所必需的,我们在酵母缺失文库中筛选了增强或抑制铁锈色的基因。我们发现,硫同化途径中的基因是产生铁锈色所必需的,但不是药物敏感性表型所必需的。我们的结果表明,单个数量性状多态性可以产生一系列复杂的下游变化,为多效性提供了分子基础。

相似文献

1
Dissecting the pleiotropic consequences of a quantitative trait nucleotide.
FEMS Yeast Res. 2009 Aug;9(5):713-22. doi: 10.1111/j.1567-1364.2009.00516.x. Epub 2009 Apr 23.
2
Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19387-91. doi: 10.1073/pnas.0708194104. Epub 2007 Nov 27.
4
A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae.
G3 (Bethesda). 2012 Jul;2(7):753-60. doi: 10.1534/g3.112.002550. Epub 2012 Jul 1.
5
Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine beta-synthase deficiency.
J Bacteriol. 1988 Dec;170(12):5883-9. doi: 10.1128/jb.170.12.5883-5889.1988.
8
Quantitative trait loci mapped to single-nucleotide resolution in yeast.
Nat Genet. 2005 Dec;37(12):1333-40. doi: 10.1038/ng1674. Epub 2005 Nov 6.
9
10
Chemical chaperone rescue of mutant human cystathionine beta-synthase.
Mol Genet Metab. 2007 Aug;91(4):335-42. doi: 10.1016/j.ymgme.2007.04.011. Epub 2007 May 30.

引用本文的文献

1
Opt1 imports CoA precursors as glutathione mixed disulfides.
J Biol Chem. 2025 Jul 21;301(9):110503. doi: 10.1016/j.jbc.2025.110503.
2
Multiple epistatic DNA variants in a single gene affect gene expression in trans.
Genetics. 2022 Jan 4;220(1). doi: 10.1093/genetics/iyab208.
4
DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories.
PLoS Genet. 2019 Nov 18;15(11):e1008375. doi: 10.1371/journal.pgen.1008375. eCollection 2019 Nov.
5
Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Strains.
Front Genet. 2019 Jul 23;10:683. doi: 10.3389/fgene.2019.00683. eCollection 2019.
7
Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans.
Curr Genet. 2018 Jun;64(3):681-696. doi: 10.1007/s00294-017-0783-7. Epub 2017 Nov 20.
8
Population perspectives on functional genomic variation in yeast.
Brief Funct Genomics. 2016 Mar;15(2):138-46. doi: 10.1093/bfgp/elv044. Epub 2015 Oct 14.
9
Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.
PLoS Genet. 2015 Jun 3;11(6):e1005195. doi: 10.1371/journal.pgen.1005195. eCollection 2015 Jun.

本文引用的文献

1
Learning a prior on regulatory potential from eQTL data.
PLoS Genet. 2009 Jan;5(1):e1000358. doi: 10.1371/journal.pgen.1000358. Epub 2009 Jan 30.
2
Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast.
PLoS Genet. 2008 Jul 11;4(7):e1000123. doi: 10.1371/journal.pgen.1000123.
3
Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae.
Mol Ecol. 2008 Jun;17(12):2985-97. doi: 10.1111/j.1365-294X.2008.03765.x. Epub 2008 Apr 18.
4
Gene-environment interaction in yeast gene expression.
PLoS Biol. 2008 Apr 15;6(4):e83. doi: 10.1371/journal.pbio.0060083.
5
Pleiotropic scaling of gene effects and the 'cost of complexity'.
Nature. 2008 Mar 27;452(7186):470-2. doi: 10.1038/nature06756.
6
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2008 Mar;74(5):1418-27. doi: 10.1128/AEM.01758-07. Epub 2008 Jan 11.
7
Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19387-91. doi: 10.1073/pnas.0708194104. Epub 2007 Nov 27.
10
Mitochondrial retrograde signaling.
Annu Rev Genet. 2006;40:159-85. doi: 10.1146/annurev.genet.40.110405.090613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验