Wedman Jouke Jan, de Vries Lotte, van Lingen Bart, van der Zwaag Marianne, Gómez-Sánchez Rubén, Hardenberg Ralph, Huibers Wim, Permentier Hjalmar, Strauss Erick, Chang Michael, Reggiori Fulvio, de Kroon Anton I, Sibon Ody C M, Schepers Hein
Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
J Biol Chem. 2025 Jul 21;301(9):110503. doi: 10.1016/j.jbc.2025.110503.
Pantothenate is a key vitamin for the intracellular biosynthesis of the essential molecule coenzyme A (CoA). Pantothenate can be biosynthesized or is taken up by cells via plasma membrane transporters. In the cell, pantothenate, ATP, and cysteine are required to synthesize CoA via five enzymatic steps. This canonical CoA biosynthesis route is well-studied in various organisms. Alternative routes that begin with the uptake of pantetheine (PanSH) or 4'-phosphopantetheine (PPanSH) as initial CoA precursors also exist. These alternative routes are vital for numerous unicellular organisms and are of interest for treating human diseases caused by defects in the canonical CoA biosynthesis pathway. In contrast to the uptake mechanisms for pantothenate, the cellular uptake mechanisms for PanSH and/or PPanSH are unresolved. Through a combination of in vivo experiments, yeast genetics, and the use of chemically traceable compounds, we uncovered a non-canonical CoA biosynthesis pathway. We demonstrate that extracellularly, PanSH and PPanSH form mixed disulfides with glutathione, followed by uptake via the oligopeptide transporter Opt1. Once PanSH or PPanSH are imported, they are converted into CoA. Via this route, several proteins essential for the canonical pantothenate-cysteine-dependent CoA biosynthesis pathway become dispensable. Additionally, we show that yeast strains cultured on PanSH or PPanSH have a growth advantage under conditions of decreased cysteine biosynthesis. The identified non-canonical CoA biosynthesis route provides a framework to treat CoA-linked diseases and to manipulate the growth of pathogenic or beneficial organisms that grow on PanSH or PPanSH.
泛酸盐是必需分子辅酶A(CoA)细胞内生物合成的关键维生素。泛酸盐可通过细胞膜转运蛋白进行生物合成或被细胞摄取。在细胞中,泛酸盐、ATP和半胱氨酸需要通过五个酶促步骤来合成CoA。这条经典的CoA生物合成途径在各种生物体中都得到了充分研究。也存在以泛硫乙胺(PanSH)或4'-磷酸泛酰巯基乙胺(PPanSH)作为初始CoA前体摄取开始的替代途径。这些替代途径对许多单细胞生物至关重要,并且对于治疗由经典CoA生物合成途径缺陷引起的人类疾病具有重要意义。与泛酸盐的摄取机制不同,PanSH和/或PPanSH的细胞摄取机制尚未明确。通过体内实验、酵母遗传学和化学可追踪化合物的结合使用,我们发现了一条非经典的CoA生物合成途径。我们证明,在细胞外,PanSH和PPanSH与谷胱甘肽形成混合二硫键,然后通过寡肽转运蛋白Opt1摄取。一旦PanSH或PPanSH被导入,它们就会转化为CoA。通过这条途径,经典的泛酸盐-半胱氨酸依赖性CoA生物合成途径所需的几种蛋白质变得不再必要。此外,我们表明,在PanSH或PPanSH上培养的酵母菌株在半胱氨酸生物合成减少的条件下具有生长优势。所确定的非经典CoA生物合成途径为治疗与CoA相关的疾病以及操纵在PanSH或PPanSH上生长的致病或有益生物体的生长提供了一个框架。