Lin Zhi, Huang Weidong, Zhang Jingfeng, Fan Jing-Song, Yang Daiwen
Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8906-11. doi: 10.1073/pnas.0813255106. Epub 2009 May 20.
Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with alpha-helical and random coil structures in silk glands into insoluble fibers with mainly beta-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a approximately 366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at > or = 37 degrees C and a protein concentration of > 0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks.
蜘蛛丝以其出色的机械性能以及仿生和工业潜力而闻名。它们是由丝腺中具有α螺旋和无规卷曲结构的水溶性丝心蛋白自然重折叠形成主要为β结构的不溶性纤维。丝心蛋白在原子分辨率下的结构以及丝的形成机制在很大程度上仍然未知。在这里,我们报告了一种约366 kDa的卵囊丝蛋白各个结构域的三维结构,该蛋白由20个相同的1型重复结构域、一个2型重复结构域以及保守的非重复N端和C端结构域组成。通过核磁共振技术确定了溶液中各个结构域的结构。通过核磁共振和动态光散射技术研究了结构域间的相互作用。利用电子显微镜检查了由这些结构域形成胶束和宏观纤维的情况。我们发现,与至少一个重复结构域共价连接的任何一个末端结构域都会自发形成类似胶束的结构,并且在≥37℃和蛋白质浓度>0.1 wt%时可以进一步转化为纤维。我们的生物物理和生化实验表明,亲水性较低的末端结构域启动蛋白质的组装并形成胶束的外层,而亲水性较高的重复结构域则嵌入内部,以确保形成类似胶束的结构,这些结构是丝形成过程中的关键中间体。我们的结果确定了单个丝蛋白结构域在纤维形成中的作用,并为设计用于生产人造丝的微型丝心蛋白提供了基础。