Suppr超能文献

球形和真实形状边界元头模型在经颅磁刺激导航中的比较。

Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.

出版信息

Clin Neurophysiol. 2013 Oct;124(10):1995-2007. doi: 10.1016/j.clinph.2013.04.019. Epub 2013 Jul 25.

Abstract

OBJECTIVE

MRI-guided real-time transcranial magnetic stimulation (TMS) navigators that apply electromagnetic modeling have improved the utility of TMS. However, their accuracy and speed depends on the assumed volume conductor geometry. Spherical models found in present navigators are computationally fast but may be inaccurate in some areas. Realistically shaped boundary-element models (BEMs) could increase accuracy at a moderate computational cost, but it is unknown which model features have the largest influence on accuracy. Thus, we compared different types of spherical models and BEMs.

METHODS

Globally and locally fitted spherical models and different BEMs with either one or three compartments and with different skull-to-brain conductivity ratios (1/1-1/80) were compared against a reference BEM.

RESULTS

The one-compartment BEM at inner skull surface was almost as accurate as the reference BEM. Skull/brain conductivity ratio in the range 1/10-1/80 had only a minor influence. BEMs were superior to spherical models especially in frontal and temporal areas (up to 20mm localization and 40% intensity improvement); in motor cortex all models provided similar results.

CONCLUSIONS

One-compartment BEMs offer a good balance between accuracy and computational cost.

SIGNIFICANCE

Realistically shaped BEMs may increase TMS navigation accuracy in several brain areas, such as in prefrontal regions often targeted in clinical applications.

摘要

目的

应用电磁建模的 MRI 引导实时经颅磁刺激(TMS)导航器提高了 TMS 的实用性。然而,其准确性和速度取决于假设的容积导体几何形状。目前导航器中使用的球形模型计算速度快,但在某些区域可能不准确。采用真实形状的边界元模型(BEM)可以在适度的计算成本下提高准确性,但尚不清楚哪种模型特征对准确性的影响最大。因此,我们比较了不同类型的球形模型和 BEM。

方法

我们比较了全局和局部拟合的球形模型以及具有一个或三个腔室的不同 BEM,以及颅骨-大脑电导率比(1/1-1/80)不同的 BEM,与参考 BEM 进行了比较。

结果

内颅骨表面的单腔 BEM 几乎与参考 BEM 一样准确。颅骨/大脑电导率比在 1/10-1/80 范围内只有很小的影响。BEM 优于球形模型,尤其是在前额和颞部区域(定位精度提高了 20mm,强度提高了 40%);在运动皮层,所有模型都提供了相似的结果。

结论

单腔 BEM 在准确性和计算成本之间提供了良好的平衡。

意义

真实形状的 BEM 可能会提高 TMS 导航在多个脑区的准确性,例如在临床应用中经常针对的前额区域。

相似文献

1
Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation.
Clin Neurophysiol. 2013 Oct;124(10):1995-2007. doi: 10.1016/j.clinph.2013.04.019. Epub 2013 Jul 25.
2
Development of volume conductor and source models to localize epileptic foci.
J Clin Neurophysiol. 2007 Apr;24(2):101-19. doi: 10.1097/WNP.0b013e318038fb3e.
3
The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
Neuroimage. 2016 Oct 15;140:150-62. doi: 10.1016/j.neuroimage.2015.12.019. Epub 2015 Dec 17.
4
A standardized boundary element method volume conductor model.
Clin Neurophysiol. 2002 May;113(5):702-12. doi: 10.1016/s1388-2457(02)00030-5.
5
Individual head models for estimating the TMS-induced electric field in rat brain.
Sci Rep. 2020 Oct 15;10(1):17397. doi: 10.1038/s41598-020-74431-z.
8
Experimental tests of EEG source localization accuracy in realistically shaped head models.
Clin Neurophysiol. 2001 Dec;112(12):2288-92. doi: 10.1016/s1388-2457(01)00669-1.
10
3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method.
Phys Med Biol. 2009 Jun 21;54(12):3631-47. doi: 10.1088/0031-9155/54/12/002. Epub 2009 May 21.

引用本文的文献

2
Real-time computation of brain E-field for enhanced transcranial magnetic stimulation neuronavigation and optimization.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00412. eCollection 2025.
4
Improved Source Localization of Auditory Evoked Fields using Reciprocal BEM-FMM.
bioRxiv. 2025 May 14:2025.05.09.653081. doi: 10.1101/2025.05.09.653081.
6
High-Definition MEG Source Estimation using the Reciprocal Boundary Element Fast Multipole Method.
bioRxiv. 2025 Mar 24:2025.03.21.644601. doi: 10.1101/2025.03.21.644601.
7
Pseudo-MRI Engine for MRI-Free Electromagnetic Source Imaging.
Hum Brain Mapp. 2025 Feb 1;46(2):e70148. doi: 10.1002/hbm.70148.
8
Novel Volume Integral Equation Approach for Low-Frequency E-Field Dosimetry of Transcranial Magnetic Stimulation.
IEEE Trans Magn. 2024 Dec;60(12). doi: 10.1109/tmag.2024.3486081. Epub 2024 Oct 24.
9
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.

本文引用的文献

2
Bioelectromagnetic forward problem: isolated source approach revis(it)ed.
Phys Med Biol. 2012 Jun 7;57(11):3517-35. doi: 10.1088/0031-9155/57/11/3517. Epub 2012 May 11.
3
FreeSurfer.
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.
5
How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Oct 1;58(3):849-59. doi: 10.1016/j.neuroimage.2011.06.069. Epub 2011 Jul 1.
6
Epidural cortical stimulation of the left dorsolateral prefrontal cortex for refractory major depressive disorder.
Neurosurgery. 2011 Nov;69(5):1015-29; discussion 1029. doi: 10.1227/NEU.0b013e318229cfcd.
7
Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Jan 1;54(1):234-43. doi: 10.1016/j.neuroimage.2010.07.061. Epub 2010 Aug 1.
8
Navigated transcranial magnetic stimulation.
Neurophysiol Clin. 2010 Mar;40(1):7-17. doi: 10.1016/j.neucli.2010.01.006. Epub 2010 Feb 19.
9
Electrical conductivity of tissue at frequencies below 1 MHz.
Phys Med Biol. 2009 Aug 21;54(16):4863-78. doi: 10.1088/0031-9155/54/16/002. Epub 2009 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验