Suppr超能文献

皮质褶皱几何结构调节经颅磁刺激电场强度和峰值位移。

Cortical fold geometry modulates transcranial magnetic stimulation electric field strength and peak displacement.

作者信息

Wang Jinting, Zhai Jiayu, Wang Yiding, Lin JiuGe, Pan Donghua, Li Liyi

机构信息

School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China.

Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150028, China.

出版信息

Sci Rep. 2025 Jun 3;15(1):19361. doi: 10.1038/s41598-025-01911-5.

Abstract

This study investigated how cortical folding morphology influences transcranial magnetic stimulation (TMS)-induced electric fields. We constructed a simplified multi-layered curved cortical fold model to quantitatively analyze the relationships between key morphological parameters (e.g., cross-sectional shape and gyral crest curvature) and spatial electric field characteristics. The results demonstrated that deeper cortical folds enhance peak electric field strength and promote field penetration into deeper brain regions, while crest curvature governs directional field intensity variations and modulates peak displacement distances. Validation in realistic head models further confirmed that cross-sectional shape impacts field strength, and apical curvature drives spatial shifts in peak locations. The findings establish actionable connections between cortical morphology and electric field metrics, offering practical guidance for adjusting stimulation parameters in scenarios where precise field modeling is unavailable. Furthermore, the identified morphological predictors may expedite coil placement optimization in subject-specific models, improving the efficiency of TMS protocol design.

摘要

本研究调查了皮质折叠形态如何影响经颅磁刺激(TMS)诱发的电场。我们构建了一个简化的多层弯曲皮质折叠模型,以定量分析关键形态学参数(如横截面形状和脑回嵴曲率)与空间电场特征之间的关系。结果表明,更深的皮质折叠增强了峰值电场强度,并促进电场穿透到更深的脑区,而嵴曲率控制着电场强度的方向变化,并调节峰值位移距离。在真实头部模型中的验证进一步证实,横截面形状影响场强,而顶端曲率驱动峰值位置的空间偏移。这些发现建立了皮质形态与电场指标之间的可操作联系,为在无法进行精确场建模的情况下调整刺激参数提供了实际指导。此外,所确定的形态学预测指标可能会加快特定受试者模型中线圈放置的优化,提高TMS方案设计的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d4/12134171/92646a291f3b/41598_2025_1911_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验