School of Computer Sciences and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China.
Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States of America.
PLoS One. 2021 Jul 30;16(7):e0254588. doi: 10.1371/journal.pone.0254588. eCollection 2021.
Transcranial magnetic stimulation (TMS) is a non-invasive neurostimulation technique that is increasingly used in the treatment of neuropsychiatric disorders and neuroscience research. Due to the complex structure of the brain and the electrical conductivity variation across subjects, identification of subject-specific brain regions for TMS is important to improve the treatment efficacy and understand the mechanism of treatment response. Numerical computations have been used to estimate the stimulated electric field (E-field) by TMS in brain tissue. But the relative long computation time limits the application of this approach. In this paper, we propose a deep-neural-network based approach to expedite the estimation of whole-brain E-field by using a neural network architecture, named 3D-MSResUnet and multimodal imaging data. The 3D-MSResUnet network integrates the 3D U-net architecture, residual modules and a mechanism to combine multi-scale feature maps. It is trained using a large dataset with finite element method (FEM) based E-field and diffusion magnetic resonance imaging (MRI) based anisotropic volume conductivity or anatomical images. The performance of 3D-MSResUnet is evaluated using several evaluation metrics and different combinations of imaging modalities and coils. The experimental results show that the output E-field of 3D-MSResUnet provides reliable estimation of the E-field estimated by the state-of-the-art FEM method with significant reduction in prediction time to about 0.24 second. Thus, this study demonstrates that neural networks are potentially useful tools to accelerate the prediction of E-field for TMS targeting.
经颅磁刺激(TMS)是一种非侵入性的神经刺激技术,越来越多地用于治疗神经精神疾病和神经科学研究。由于大脑的复杂结构和个体之间的电导率变化,确定 TMS 的特定于个体的脑区对于提高治疗效果和理解治疗反应的机制非常重要。数值计算已被用于估计 TMS 在脑组织中产生的刺激电场(E 场)。但是,相对较长的计算时间限制了这种方法的应用。在本文中,我们提出了一种基于深度神经网络的方法,通过使用神经网络架构 3D-MSResUnet 和多模态成像数据来加速全脑 E 场的估计。3D-MSResUnet 网络集成了 3D U-net 架构、残差模块和多尺度特征图组合机制。它使用基于有限元方法(FEM)的 E 场和基于扩散磁共振成像(MRI)的各向异性体积电导率或解剖图像的大型数据集进行训练。使用几种评估指标和不同的成像模式和线圈组合来评估 3D-MSResUnet 的性能。实验结果表明,3D-MSResUnet 的输出 E 场提供了对最先进的 FEM 方法估计的 E 场的可靠估计,预测时间显著减少到约 0.24 秒。因此,这项研究表明,神经网络是加速 TMS 靶向 E 场预测的潜在有用工具。