van der Meulen Marjolein C H, Yang Xu, Morgan Timothy G, Bostrom Mathias P G
Mechanical & Aerospace Engineering, Cornell University, 219 Upson Hall, Ithaca, NY 14853, USA.
Clin Orthop Relat Res. 2009 Aug;467(8):2000-6. doi: 10.1007/s11999-009-0897-4. Epub 2009 May 21.
Mechanical stimuli are critical to the growth, maintenance, and repair of the skeleton. The adaptation of bone to mechanical forces has primarily been studied in cortical bone. As a result, the mechanisms of bone adaptation to mechanical forces are not well-understood in cancellous bone. Clinically, however, diseases such as osteoporosis primarily affect cancellous tissue and mechanical solutions could counteract cancellous bone loss. We previously developed an in vivo model in the rabbit to study cancellous functional adaptation by applying well-controlled mechanical loads to cancellous sites. In the rabbit, in vivo loading of the lateral aspect of the distal femoral condyle simulated the in vivo bone-implant environment and enhanced bone mass. Using animal-specific computational models and further in vivo experiments we demonstrate here that the number of loading cycles and loading duration modulate the cancellous response by increasing bone volume fraction and thickening trabeculae to reduce the strains experienced in the bone tissue with loading and stiffen the tissue in the loading direction.
机械刺激对骨骼的生长、维持和修复至关重要。骨骼对机械力的适应性主要在皮质骨中进行了研究。因此,在松质骨中,骨骼对机械力的适应机制尚未得到充分理解。然而,在临床上,骨质疏松症等疾病主要影响松质组织,而机械解决方案可以抵消松质骨丢失。我们之前在兔子身上开发了一种体内模型,通过对松质部位施加精确控制的机械负荷来研究松质骨的功能适应性。在兔子身上,对股骨远端髁外侧进行体内加载模拟了体内骨植入环境并增加了骨量。通过使用动物特异性计算模型和进一步的体内实验,我们在此证明,加载周期数和加载持续时间通过增加骨体积分数和增厚小梁来调节松质骨反应,以减少加载时骨组织中所经历的应变,并在加载方向上使组织变硬。