Suppr超能文献

松质骨骨整合通过体内加载得到增强。

Cancellous bone osseointegration is enhanced by in vivo loading.

机构信息

Hospital for Special Surgery, New York, New York, USA.

出版信息

Tissue Eng Part C Methods. 2010 Dec;16(6):1399-406. doi: 10.1089/ten.TEC.2009.0776. Epub 2010 May 22.

Abstract

Biophysical stimuli may be an effective therapy to counteract age-related changes in bone structure that affect the primary stability of implants used in joint replacement or fracture fixation. The influence of controlled mechanical loading on osseointegration was investigated using an in vivo device implanted in the distal lateral femur of 12 male rabbits. Compressive loads (1 MPa, 1 Hz, 50 cycles/day, 4 weeks) were applied to a porous titanium foam implant and the underlying cancellous bone. The contralateral limbs served as nonloaded controls. Backscattered electron imaging indicated that the amount of bone ingrowth was significantly greater in the loaded limb than in the nonloaded control limb, whereas the amount of underlying cancellous periprosthetic bone was similar. No significant difference in the mineral apposition rate of the bone ingrowth or periprosthetic bone was measured in the loaded compared to the control limb. Histological analysis demonstrated newly formed woven bone in direct apposition to the implant coating, with a lack of fibrous tissue at the implant-periprosthetic bone interface in both loaded and nonloaded implants. The lack of fibrous tissue demonstrates that mechanical stimulation using this model significantly enhanced cancellous bone ingrowth without the detrimental effects of micromotion. These results suggest that biophysical therapy should be further investigated to augment current treatments to enhance long-term fixation of orthopedic devices. Additionally, this novel in vivo loading model can be used to further investigate the influence of biophysical stimulation on other tissue engineering approaches requiring bone ingrowth into both metallic and nonmetallic cell-seeded scaffolds.

摘要

生物物理刺激可能是一种有效的治疗方法,可以对抗与年龄相关的骨骼结构变化,这些变化会影响关节置换或骨折固定中使用的植入物的初始稳定性。本研究采用体内装置,在 12 只雄性兔的股骨远端外侧植入多孔钛泡沫植入物和松质骨,研究了控制机械加载对骨整合的影响。对多孔钛泡沫植入物和下方的松质骨施加 1 MPa、1 Hz、50 个循环/天、4 周的压缩载荷。对侧肢体作为未加载对照。背散射电子成像表明,加载侧的骨内生长量明显大于未加载对照组,而下方的假体周围松质骨量相似。在加载侧和对照侧,骨内生长或假体周围骨的矿化附着率没有显著差异。组织学分析表明,在加载和未加载的植入物中,在植入物涂层的直接贴附处形成了新的编织骨,而在植入物-假体周围骨界面处缺乏纤维组织。在加载和未加载的植入物中,缺乏纤维组织表明,使用该模型进行机械刺激显著增强了松质骨内生长,而没有微运动的有害影响。这些结果表明,应该进一步研究生物物理治疗方法,以增强当前的治疗方法,增强骨科器械的长期固定。此外,这种新型的体内加载模型可用于进一步研究生物物理刺激对其他组织工程方法的影响,这些方法需要金属和非金属细胞接种支架中的骨内生长。

相似文献

1
Cancellous bone osseointegration is enhanced by in vivo loading.
Tissue Eng Part C Methods. 2010 Dec;16(6):1399-406. doi: 10.1089/ten.TEC.2009.0776. Epub 2010 May 22.
2
Osseointegration into a novel titanium foam implant in the distal femur of a rabbit.
J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):479-88. doi: 10.1002/jbm.b.31541.
3
Intermittent PTH administration and mechanical loading are anabolic for periprosthetic cancellous bone.
J Orthop Res. 2015 Feb;33(2):163-73. doi: 10.1002/jor.22748. Epub 2014 Nov 18.
4
Cancellous bone adaptation to in vivo loading in a rabbit model.
Bone. 2006 Jun;38(6):871-7. doi: 10.1016/j.bone.2005.11.026. Epub 2006 Jan 23.
5
Trabecular bone adaptation to loading in a rabbit model is not magnitude-dependent.
J Orthop Res. 2013 Jun;31(6):930-4. doi: 10.1002/jor.22316. Epub 2013 Feb 19.
6
Does implantation site influence bone ingrowth into 3D-printed porous implants?
Spine J. 2019 Nov;19(11):1885-1898. doi: 10.1016/j.spinee.2019.06.020. Epub 2019 Jun 28.
7
Bone ingrowth to implant surfaces in an inflammatory arthritis model.
J Orthop Res. 1998 Sep;16(5):576-84. doi: 10.1002/jor.1100160509.
9
The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
J Bone Joint Surg Am. 1995 Jan;77(1):97-110. doi: 10.2106/00004623-199501000-00012.
10
Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading.
J Appl Physiol (1985). 2005 May;98(5):1922-9. doi: 10.1152/japplphysiol.01080.2004. Epub 2005 Jan 7.

引用本文的文献

1
Biophysical stimuli for promoting bone repair and regeneration.
Med Rev (2021). 2024 Jul 8;5(1):1-22. doi: 10.1515/mr-2024-0023. eCollection 2025 Feb.
2
A translational murine model of aseptic loosening with osseointegration failure.
J Orthop Res. 2024 Nov;42(11):2525-2534. doi: 10.1002/jor.25915. Epub 2024 Jun 20.
5
Load Share Mapping for Traditional PEEK vs Novel Hybrid PEEK With Expandable Porous Mesh Intervertebral Devices.
Int J Spine Surg. 2020 Dec;14(s3):S115-S120. doi: 10.14444/7134. Epub 2020 Oct 29.
7
Examining trabecular morphology and chemical composition of peri-scaffold osseointegrated bone.
J Orthop Surg Res. 2020 Sep 14;15(1):406. doi: 10.1186/s13018-020-01931-z.
8
System for application of controlled forces on dental implants in rat maxillae: Influence of the number of load cycles on bone healing.
J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):965-975. doi: 10.1002/jbm.b.34449. Epub 2019 Jul 31.
10
Bone healing response in cyclically loaded implants: Comparing zero, one, and two loading sessions per day.
J Mech Behav Biomed Mater. 2018 Sep;85:152-161. doi: 10.1016/j.jmbbm.2018.05.044. Epub 2018 May 31.

本文引用的文献

1
Osseointegration into a novel titanium foam implant in the distal femur of a rabbit.
J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):479-88. doi: 10.1002/jbm.b.31541.
2
Use of fluorochrome labels in in vivo bone tissue engineering research.
Tissue Eng Part B Rev. 2010 Apr;16(2):209-17. doi: 10.1089/ten.TEB.2009.0503.
3
The effects of loading on cancellous bone in the rabbit.
Clin Orthop Relat Res. 2009 Aug;467(8):2000-6. doi: 10.1007/s11999-009-0897-4. Epub 2009 May 21.
4
Effect of intermittent loading and surface roughness on peri-implant bone formation in a bone chamber model.
J Clin Periodontol. 2007 Nov;34(11):998-1006. doi: 10.1111/j.1600-051X.2007.01135.x.
5
Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
J Biomech. 2008;41(1):145-54. doi: 10.1016/j.jbiomech.2007.07.008. Epub 2007 Aug 13.
6
Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.
Clin Oral Implants Res. 2007 Aug;18(4):471-80. doi: 10.1111/j.1600-0501.2007.01339.x. Epub 2007 May 21.
7
Influence of controlled immediate loading and implant design on peri-implant bone formation.
J Clin Periodontol. 2007 Feb;34(2):172-81. doi: 10.1111/j.1600-051X.2006.01014.x.
8
Effect of mechanical stimuli on skeletal regeneration around implants.
Bone. 2007 Apr;40(4):919-30. doi: 10.1016/j.bone.2006.10.027. Epub 2006 Dec 18.
9
Age-dependent microdamage removal following mechanically induced microdamage in trabecular bone in vivo.
Bone. 2007 Feb;40(2):425-32. doi: 10.1016/j.bone.2006.08.011. Epub 2006 Oct 19.
10
Evaluation of machining methods for trabecular metal implants in a rabbit intramedullary osseointegration model.
J Biomed Mater Res B Appl Biomater. 2007 Feb;80(2):528-40. doi: 10.1002/jbm.b.30627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验