Suppr超能文献

通过氟代标记对天然荧光化合物进行分离导向衍生化,随后进行氟相液相色谱分析。

Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

作者信息

Sakaguchi Yohei, Yoshida Hideyuki, Todoroki Kenichiro, Nohta Hitoshi, Yamaguchi Masatoshi

机构信息

Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan.

出版信息

Anal Chem. 2009 Jun 15;81(12):5039-45. doi: 10.1021/ac9005952.

Abstract

We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

摘要

我们开发了一种基于“氟代衍生化”的新型简单方法,用于天然荧光化合物的液相色谱分析。该方法使用带有氟代固定相的色谱柱。具有目标官能团的天然荧光分析物用非荧光氟代标签进行柱前衍生化,氟代标记的分析物保留在色谱柱中,而未衍生化的物质则不保留。仅在适当的保留时间对保留的荧光分析物进行荧光检测,而不检测没有荧光团的保留底物。在本研究中,具有生物学重要性的羧酸(高香草酸、香草扁桃酸和5-羟基吲哚乙酸)和药物(萘普生、非诺洛芬、氟比洛芬和依托度酸)被用作天然荧光化合物的模型。实验结果表明,氟代相色谱柱能够基于氟代分离选择性地保留包括氟代标记分析物在内的氟代化合物。我们认为,这里提出的以分离为导向的衍生化是在定量液相色谱分析中引入氟代衍生化的第一步。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验