Hsu Mei, Richardson Christine A, Olivier Emmanuel, Qiu Caihong, Bouhassira Eric E, Lowrey Christopher H, Fiering Steven
Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03756, USA.
Exp Hematol. 2009 Jul;37(7):799-806.e4. doi: 10.1016/j.exphem.2009.04.006. Epub 2009 May 19.
The regulation of the beta-globin switch remains undetermined, and understanding this mechanism has important benefits for clinical and basic science. Histone modifications regulate gene expression and this study determines the presence of three important histone modifications across the beta-globin locus in erythroblasts with different beta-like globin-expression profiles. Understanding the chromatin associated with weak gamma gene expression in bone marrow cells is an important objective, with the goal of ultimately inducing postnatal expression of weak gamma-globin to cure beta-hemoglobinopathies.
These studies use uncultured primary fetal and bone marrow erythroblasts and human embryonic stem cell-derived primitive-like erythroblasts. Chromatin immunoprecipitation with antibodies against modified histones reveals DNA associated with such histones. Precipitated DNA is quantitated by real-time polymerase chain reaction for 40 sites across the locus.
Distribution of histone modifications differs at each developmental stage. The most highly expressed genes at each stage are embedded within large domains of modifications associated with expression (acetylated histone H3 [H3ac] and dimethyl lysine 4 of histone H3 [H3K4me2]). Moderately expressed genes have H3ac and H3K4me2 in the immediate area around the gene. Dimethyl lysine 9 of histone H3 (H3K9me2), a mark associated with gene suppression, is present at the epsilon and gamma genes in bone marrow cells, suggesting active suppression of these genes.
This study reveals complex patterns of histone modifications associated with highly expressed, moderately expressed, and unexpressed genes. Activation of gamma postnatally will likely require extensive modification of the histones in a large domain around the gamma genes.
β-珠蛋白开关的调控机制尚未明确,了解这一机制对临床和基础科学具有重要意义。组蛋白修饰可调节基因表达,本研究确定了在具有不同β样珠蛋白表达谱的成红细胞中,β-珠蛋白基因座上三种重要组蛋白修饰的存在情况。了解与骨髓细胞中弱γ基因表达相关的染色质是一个重要目标,最终目的是诱导出生后弱γ-珠蛋白的表达以治愈β-血红蛋白病。
这些研究使用未经培养的原代胎儿和成体骨髓成红细胞以及人胚胎干细胞衍生的原始样成红细胞。用针对修饰组蛋白的抗体进行染色质免疫沉淀,可揭示与此类组蛋白相关的DNA。通过实时聚合酶链反应对基因座上的40个位点的沉淀DNA进行定量分析。
组蛋白修饰的分布在每个发育阶段都有所不同。每个阶段表达最高的基因都嵌入在与表达相关的大片段修饰区域内(乙酰化组蛋白H3 [H3ac] 和组蛋白H3赖氨酸4二甲基化 [H3K4me2])。中度表达的基因在基因紧邻区域有H3ac和H3K4me2。组蛋白H3赖氨酸9二甲基化(H3K9me2),一种与基因抑制相关的标记,存在于骨髓细胞的ε和γ基因处,表明这些基因受到主动抑制。
本研究揭示了与高表达、中度表达和未表达基因相关的复杂组蛋白修饰模式。出生后γ基因的激活可能需要对γ基因周围大片段区域的组蛋白进行广泛修饰。