Suppr超能文献

短小芽孢杆菌在化学限定培养基中对乙偶姻的分解代谢及乙酰丁二醇的形成

Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium.

作者信息

Xiao Zijun, Ma Cuiqing, Xu Ping, Lu Jian R

机构信息

Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, People's Republic of China.

出版信息

PLoS One. 2009 May 20;4(5):e5627. doi: 10.1371/journal.pone.0005627.

Abstract

BACKGROUND

Most low molecular diols are highly water-soluble, hygroscopic, and reactive with many organic compounds. In the past decades, microbial research to produce diols, e.g. 1,3-propanediol and 2,3-butanediol, were considerably expanded due to their versatile usages especially in polymer synthesis and as possible alternatives to fossil based feedstocks from the bioconversion of renewable natural resources. This study aimed to provide a new way for bacterial production of an acetylated diol, i.e. acetylbutanediol (ABD, 3,4-dihydroxy-3-methylpentan-2-one), by acetoin metabolism.

METHODOLOGY/PRINCIPAL FINDINGS: When Bacillus pumilus ATCC 14884 was aerobically cultured in a chemically defined medium with acetoin as the sole carbon and energy source, ABD was produced and identified by gas chromatography--chemical ionization mass spectrometry and NMR spectroscopy.

CONCLUSIONS/SIGNIFICANCE: Although the key enzyme leading to ABD from acetoin has not been identified yet at this stage, this study proposed a new metabolic pathawy to produce ABD in vivo from using renewable resources--in this case acetoin, which could be reproduced from glucose in this study--making it the first facility in the world to prepare this new bio-based diol product.

摘要

背景

大多数低分子二醇具有高度水溶性、吸湿性,且能与许多有机化合物发生反应。在过去几十年中,由于二醇类物质用途广泛,特别是在聚合物合成中,以及作为可再生自然资源生物转化生成的化石基原料的可能替代品,微生物生产二醇(如1,3 - 丙二醇和2,3 - 丁二醇)的研究得到了显著扩展。本研究旨在通过乙偶姻代谢为细菌生产乙酰化二醇(即乙酰丁二醇,ABD,3,4 - 二羟基 - 3 - 甲基戊烷 - 2 - 酮)提供一种新方法。

方法/主要发现:当短小芽孢杆菌ATCC 14884在以乙偶姻为唯一碳源和能源的化学限定培养基中进行需氧培养时,会产生ABD,并通过气相色谱 - 化学电离质谱法和核磁共振光谱法进行鉴定。

结论/意义:尽管现阶段尚未确定从乙偶姻生成ABD的关键酶,但本研究提出了一条利用可再生资源在体内生产ABD的新代谢途径——在本研究中为乙偶姻,乙偶姻可由葡萄糖生成——这使其成为世界上首个制备这种新型生物基二醇产品的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bb3/2680964/0ca7eb3dcb63/pone.0005627.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验